Edit model card

bert-base-uncased_crows_pairs_classifieronly

This model is a fine-tuned version of bert-base-uncased on the crows_pairs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6928
  • Accuracy: 0.4735
  • Tp: 0.3278
  • Tn: 0.1457
  • Fp: 0.3179
  • Fn: 0.2086

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy Tp Tn Fp Fn
0.7033 1.05 20 0.6951 0.4636 0.0 0.4636 0.0 0.5364
0.7008 2.11 40 0.6951 0.4636 0.0 0.4636 0.0 0.5364
0.6998 3.16 60 0.6939 0.4570 0.0 0.4570 0.0066 0.5364
0.6958 4.21 80 0.6948 0.4636 0.0 0.4636 0.0 0.5364
0.7025 5.26 100 0.6981 0.4636 0.0 0.4636 0.0 0.5364
0.7083 6.32 120 0.6917 0.5397 0.5364 0.0033 0.4603 0.0
0.7016 7.37 140 0.6939 0.4570 0.0 0.4570 0.0066 0.5364
0.7061 8.42 160 0.6984 0.4636 0.0 0.4636 0.0 0.5364
0.698 9.47 180 0.6948 0.4636 0.0 0.4636 0.0 0.5364
0.7009 10.53 200 0.6931 0.4967 0.1623 0.3344 0.1291 0.3742
0.7047 11.58 220 0.6998 0.4636 0.0 0.4636 0.0 0.5364
0.6945 12.63 240 0.6935 0.4868 0.0364 0.4503 0.0132 0.5
0.708 13.68 260 0.6924 0.5364 0.5033 0.0331 0.4305 0.0331
0.7007 14.74 280 0.6935 0.4834 0.0331 0.4503 0.0132 0.5033
0.6999 15.79 300 0.6938 0.4636 0.0066 0.4570 0.0066 0.5298
0.6993 16.84 320 0.6939 0.4570 0.0 0.4570 0.0066 0.5364
0.7002 17.89 340 0.6953 0.4636 0.0 0.4636 0.0 0.5364
0.7025 18.95 360 0.6956 0.4636 0.0 0.4636 0.0 0.5364
0.7008 20.0 380 0.6905 0.5397 0.5364 0.0033 0.4603 0.0
0.7065 21.05 400 0.6970 0.4636 0.0 0.4636 0.0 0.5364
0.6996 22.11 420 0.6954 0.4636 0.0 0.4636 0.0 0.5364
0.7 23.16 440 0.6962 0.4636 0.0 0.4636 0.0 0.5364
0.7028 24.21 460 0.6948 0.4636 0.0 0.4636 0.0 0.5364
0.6924 25.26 480 0.6930 0.4834 0.2020 0.2815 0.1821 0.3344
0.6973 26.32 500 0.6941 0.4636 0.0 0.4636 0.0 0.5364
0.6953 27.37 520 0.6938 0.4603 0.0033 0.4570 0.0066 0.5331
0.6971 28.42 540 0.6928 0.4735 0.3411 0.1325 0.3311 0.1954
0.7086 29.47 560 0.6924 0.5199 0.5066 0.0132 0.4503 0.0298
0.6959 30.53 580 0.6925 0.5066 0.4636 0.0430 0.4205 0.0728
0.7103 31.58 600 0.6919 0.5397 0.5364 0.0033 0.4603 0.0
0.7019 32.63 620 0.6916 0.5397 0.5364 0.0033 0.4603 0.0
0.6941 33.68 640 0.6935 0.4868 0.0364 0.4503 0.0132 0.5
0.6878 34.74 660 0.6959 0.4636 0.0 0.4636 0.0 0.5364
0.6995 35.79 680 0.6954 0.4636 0.0 0.4636 0.0 0.5364
0.6968 36.84 700 0.6916 0.5397 0.5364 0.0033 0.4603 0.0
0.6997 37.89 720 0.6921 0.5331 0.5265 0.0066 0.4570 0.0099
0.6975 38.95 740 0.6964 0.4636 0.0 0.4636 0.0 0.5364
0.7026 40.0 760 0.6956 0.4636 0.0 0.4636 0.0 0.5364
0.7057 41.05 780 0.6943 0.4636 0.0 0.4636 0.0 0.5364
0.7028 42.11 800 0.6953 0.4636 0.0 0.4636 0.0 0.5364
0.6987 43.16 820 0.6938 0.4603 0.0033 0.4570 0.0066 0.5331
0.6973 44.21 840 0.6933 0.4868 0.0497 0.4371 0.0265 0.4868
0.7119 45.26 860 0.6930 0.4801 0.1788 0.3013 0.1623 0.3576
0.7041 46.32 880 0.6928 0.4967 0.3179 0.1788 0.2848 0.2185
0.7114 47.37 900 0.6926 0.4967 0.4139 0.0828 0.3808 0.1225
0.702 48.42 920 0.6929 0.4735 0.2318 0.2417 0.2219 0.3046
0.6945 49.47 940 0.6928 0.4735 0.3278 0.1457 0.3179 0.2086

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.13.1
  • Datasets 2.10.1
  • Tokenizers 0.13.2
Downloads last month
7
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train asun17904/bert-base-uncased_crows_pairs_classifieronly

Evaluation results