File size: 4,678 Bytes
2544d72 a3e0e60 2544d72 a3e0e60 2544d72 82209ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 |
---
base_model: meta-llama/Meta-Llama-3-8B-Instruct
inference: false
model_creator: astronomer-io
model_name: Meta-Llama-3-8B-Instruct
model_type: llama
pipeline_tag: text-generation
prompt_template: >-
{% set loop_messages = messages %}{% for message in loop_messages %}{% set
content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>
'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set
content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{% if
add_generation_prompt %}{{ '<|start_header_id|>assistant<|end_header_id|>
' }}{% endif %}
quantized_by: davidxmle
license: other
license_name: llama-3-community-license
license_link: https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct/blob/main/LICENSE
tags:
- llama
- llama-3
- facebook
- meta
- astronomer
- gptq
- pretrained
- quantized
- finetuned
- autotrain_compatible
- endpoints_compatible
datasets:
- wikitext
---
<!-- header start -->
<!-- 200823 -->
<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://www.astronomer.io/logo/astronomer-logo-RGB-standard-1200px.png" alt="Astronomer" style="width: 60%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="margin-top: 1.0em; margin-bottom: 1.0em;"></div>
<div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">This model is generously created and made open source by <a href="https://astronomer.io">Astronomer</a>.</p></div>
<div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">Astronomer is the de facto company for <a href="https://airflow.apache.org/">Apache Airflow</a>, the most trusted open-source framework for data orchestration and MLOps.</p></div>
<hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
<!-- header end -->
# Llama-3-8B-Instruct-GPTQ-4-Bit
- Original Model creator: [Meta Llama from Meta](https://huggingface.co/meta-llama)
- Original model: [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct)
- Built with Meta Llama 3
- Quantized by [Astronomer](https://astronomer.io)
<!-- description start -->
## Description
This repo contains 4 Bit quantized GPTQ model files for [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct).
This model can be loaded with less than 6 GB of VRAM (huge reduction from the original 16.07GB model) and can be served lightning fast with the cheapest Nvidia GPUs possible (Nvidia T4, Nvidia K80, RTX 4070, etc).
The 4 bit GPTQ quant has small quality degradation from the original `bfloat16` model but can be served on much smaller GPUs with maximum improvement in latency and throughput.
<!-- description end -->
## GPTQ Quantization Method
- This model is quantized by utilizing the AutoGPTQ library, following best practices noted by [GPTQ paper](https://arxiv.org/abs/2210.17323)
- Quantization is calibrated and aligned with random samples from the specified dataset (wikitext for now) for minimum accuracy loss.
| Branch | Bits | Group Size | Act Order | Damp % | GPTQ Dataset | Sequence Length | VRAM Size | ExLlama | Description |
| ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
| [main](https://huggingface.co/astronomer-io/Llama-3-8B-Instruct-GPTQ-4-Bit/tree/main) | 4 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 8192 | 9.09 GB | Yes | 4-bit, with Act Order and group size 128g. Smallest Model possible with tiny accuracy loss |
| More variants to come | TBD | TBD | TBD | TBD | TBD | TBD | TBD | TBD | May upload additional variants of GPTQ 4 bit models in the future using different parameters such as 128g group size and etc. |
## Serving this GPTQ model using vLLM
Tested serving this model via vLLM using an Nvidia T4 (16GB VRAM).
Tested with the below command
```
python -m vllm.entrypoints.openai.api_server --model astronomer-io/Llama-3-8B-Instruct-GPTQ-4-Bit --max-model-len 8192 --dtype float16
```
For the non-stop token generation bug, make sure to send requests with `stop_token_ids":[128001, 128009]` to vLLM endpoint
Example:
```
{
"model": "Llama-3-8B-Instruct-GPTQ-4-Bit",
"messages": [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Who created Llama 3?"}
],
"max_tokens": 2000,
"stop_token_ids":[128001,128009]
}
```
### Contributors
- Quantized by [David Xue, Machine Learning Engineer from Astronomer](https://www.linkedin.com/in/david-xue-uva/) |