You need to agree to share your contact information to access this model

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this model content.

w2v-bert-2.0-Fleurs_AMMI_AFRIVOICE_LRSC-ln-50hrs-v3

This model is a fine-tuned version of facebook/w2v-bert-2.0 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0509
  • Wer: 0.1756
  • Cer: 0.0552

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 80
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Cer Validation Loss Wer
2.0468 0.9996 1423 0.0860 0.4544 0.2791
0.4704 2.0 2847 0.0693 0.3196 0.2248
0.38 2.9996 4270 0.0709 0.2852 0.2316
0.3323 4.0 5694 0.0613 0.2762 0.1987
0.2975 4.9996 7117 0.0574 0.2650 0.1801
0.2638 6.0 8541 0.0683 0.2739 0.1973
0.2332 6.9996 9964 0.0648 0.2773 0.2008
0.2056 8.0 11388 0.0719 0.2810 0.2035
0.1845 8.9996 12811 0.0567 0.3252 0.1815
0.1665 10.0 14235 0.0594 0.3125 0.1836
0.1506 10.9996 15658 0.0585 0.3443 0.1830
0.1362 12.0 17082 0.0585 0.3741 0.1864
0.1233 12.9996 18505 0.0592 0.3922 0.1850
0.112 14.0 19929 0.0618 0.3927 0.1912
0.1014 14.9996 21352 0.0553 0.4532 0.1770
0.0923 16.0 22776 0.0576 0.4438 0.1872
0.0822 16.9996 24199 0.0641 0.4500 0.1991
0.0737 18.0 25623 0.0553 0.5237 0.1776
0.0664 18.9996 27046 0.0611 0.4709 0.1959
0.059 20.0 28470 0.0583 0.5256 0.1926
0.0528 20.9996 29893 0.0554 0.5598 0.1768
0.0469 22.0 31317 0.0594 0.5584 0.1861
0.041 22.9996 32740 0.0600 0.5737 0.1927
0.0364 24.0 34164 0.0563 0.6655 0.1802
0.0322 24.9996 35587 0.0556 0.6785 0.1796
0.0277 26.0 37011 0.0581 0.6534 0.1860
0.0252 26.9996 38434 0.0608 0.6609 0.1937
0.0222 28.0 39858 0.0562 0.7283 0.1796
0.0189 28.9996 41267 0.7351 0.1830 0.0577
0.0173 30.0 42691 0.7113 0.1829 0.0577
0.0154 30.9996 44114 0.7763 0.1769 0.0562
0.0138 32.0 45538 0.7698 0.1846 0.0582
0.0121 32.9996 46961 0.7890 0.1859 0.0583
0.011 34.0 48385 0.8291 0.1814 0.0570
0.01 34.9996 49808 0.8334 0.1794 0.0561
0.0088 36.0 51232 0.8611 0.1852 0.0573
0.0081 36.9996 52655 0.8689 0.1805 0.0566
0.0073 38.0 54079 0.8919 0.1801 0.0569
0.007 38.9996 55502 0.8902 0.1744 0.0548
0.0063 40.0 56926 0.9168 0.1815 0.0566
0.0058 40.9996 58349 0.9345 0.1780 0.0560
0.0051 42.0 59773 0.9237 0.1802 0.0562
0.0049 42.9996 61196 0.9519 0.1761 0.0553
0.0042 44.0 62620 0.9862 0.1750 0.0548
0.0041 44.9996 64043 0.9637 0.1777 0.0552
0.004 46.0 65467 0.9783 0.1768 0.0555
0.0034 46.9996 66890 0.9835 0.1799 0.0560
0.0032 48.0 68314 1.0196 0.1758 0.0550
0.003 48.9996 69737 0.9976 0.1804 0.0563
0.0025 50.0 71161 1.0553 0.1783 0.0557
0.0024 50.9996 72584 1.0059 0.1762 0.0555
0.0023 52.0 74008 1.0422 0.1760 0.0552
0.0021 52.9996 75431 1.0497 0.1758 0.0543
0.0019 54.0 76855 1.0509 0.1756 0.0552

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.1.0+cu118
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
36
Safetensors
Model size
606M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for asr-africa/w2v-bert-2.0-Fleurs_AMMI_AFRIVOICE_LRSC-ln-50hrs-v3

Finetuned
(229)
this model

Collection including asr-africa/w2v-bert-2.0-Fleurs_AMMI_AFRIVOICE_LRSC-ln-50hrs-v3