Bemba
Collection
Experimental automatic speech recognition models developed for the Bemba language
•
32 items
•
Updated
This model is a fine-tuned version of facebook/w2v-bert-2.0 on an unknown dataset. It achieves the following results on the evaluation set:
More information needed
More information needed
More information needed
The following hyperparameters were used during training:
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
2.1779 | 1.0 | 2546 | 0.8771 | 0.6175 | 0.1688 |
0.8215 | 2.0 | 5092 | 0.7074 | 0.5268 | 0.1557 |
0.7007 | 3.0 | 7638 | 0.6562 | 0.4932 | 0.1365 |
0.6419 | 4.0 | 10184 | 0.6431 | 0.4636 | 0.1263 |
0.5961 | 5.0 | 12730 | 0.6088 | 0.4746 | 0.1309 |
0.5581 | 6.0 | 15276 | 0.7341 | 0.4436 | 0.1240 |
0.5237 | 7.0 | 17822 | 0.6851 | 0.4406 | 0.1218 |
0.4935 | 8.0 | 20368 | 0.6648 | 0.4368 | 0.1206 |
0.4622 | 9.0 | 22914 | 0.6347 | 0.4320 | 0.1203 |
0.4284 | 10.0 | 25460 | 0.6552 | 0.4380 | 0.1206 |
0.4001 | 11.0 | 28006 | 0.6317 | 0.448 | 0.1259 |
0.3686 | 12.0 | 30552 | 0.6987 | 0.4329 | 0.1201 |
0.3397 | 13.0 | 33098 | 0.7235 | 0.4236 | 0.1183 |
0.3103 | 14.0 | 35644 | 0.7169 | 0.4386 | 0.1205 |
0.2839 | 15.0 | 38190 | 0.7628 | 0.4372 | 0.1226 |
0.2569 | 16.0 | 40736 | 0.7728 | 0.4476 | 0.1263 |
0.2316 | 17.0 | 43282 | 0.8605 | 0.4384 | 0.1255 |
0.2112 | 18.0 | 45828 | 0.8648 | 0.4619 | 0.1291 |
0.1889 | 19.0 | 48374 | 0.9461 | 0.4420 | 0.1280 |
0.1698 | 20.0 | 50920 | 1.0526 | 0.4482 | 0.1262 |
0.1529 | 21.0 | 53466 | 1.1109 | 0.4454 | 0.1249 |
0.136 | 22.0 | 56012 | 1.1421 | 0.4521 | 0.1283 |
0.1218 | 23.0 | 58558 | 1.1437 | 0.4585 | 0.1296 |
Base model
facebook/w2v-bert-2.0