This model is finetuned over XLM-RoBERTa (XLM-R) using its base variant with the Hindi, Gujarati, Marathi, and Bengali languages from the Indo-Aryan family using the OSCAR monolingual datasets. As these languages had imbalanced datasets, we used resampling strategies as used in pretraining the XLM-R to balance the resulting dataset after combining these languages. We used the same masked language modelling (MLM) objective which was used for pretraining the XLM-R. As it is built over the pretrained XLM-R, we leveraged Transfer Learning by exploiting the knowledge from its parent model.


OSCAR corpus contains several diverse datasets for different languages. We followed the work of CamemBERT who reported better performance with this diverse dataset as compared to the other large homogenous datasets.

Preprocessing and Training Procedure

Please visit this link for the detailed procedure.


  • This model can be used for further finetuning for different NLP tasks using the Hindi, Gujarati, Marathi, and Bengali languages.
  • It can be used to generate contextualised word representations for the words from the above languages.
  • It can be used for domain adaptation.
  • It can be used to predict the missing words from their sentences.


Using the model to predict missing words

from transformers import pipeline
unmasker = pipeline('fill-mask', model='ashwani-tanwar/Indo-Aryan-XLM-R-Base')
pred_word = unmasker("અમદાવાદ એ ગુજરાતનું એક <mask> છે.")
[{'sequence': '<s> અમદાવાદ એ ગુજરાતનું એક શહેર છે.</s>', 'score': 0.7811868786811829, 'token': 85227, 'token_str': '▁શહેર'}, 
{'sequence': '<s> અમદાવાદ એ ગુજરાતનું એક ગામ છે.</s>', 'score': 0.055032357573509216, 'token': 66346, 'token_str': '▁ગામ'}, 
{'sequence': '<s> અમદાવાદ એ ગુજરાતનું એક નામ છે.</s>', 'score': 0.0287721399217844, 'token': 29565, 'token_str': '▁નામ'}, 
{'sequence': '<s> અમદાવાદ એ ગુજરાતનું એક રાજ્ય છે.</s>', 'score': 0.02565067447721958, 'token': 63678, 'token_str': '▁રાજ્ય'}, 
{'sequence': '<s> અમદાવાદ એ ગુજરાતનું એકનગર છે.</s>', 'score': 0.022877279669046402, 'token': 69702, 'token_str': 'નગર'}]

Using the model to generate contextualised word representations

from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("ashwani-tanwar/Indo-Aryan-XLM-R-Base")
model = AutoModel.from_pretrained("ashwani-tanwar/Indo-Aryan-XLM-R-Base")
sentence = "અમદાવાદ એ ગુજરાતનું એક શહેર છે."
encoded_sentence = tokenizer(sentence, return_tensors='pt')
context_word_rep = model(**encoded_sentence)

Select AutoNLP in the “Train” menu to fine-tune this model automatically.

Downloads last month
Hosted inference API
Mask token: <mask>
This model can be loaded on the Inference API on-demand.