asharsha30/LLAMA_Harsha_8_B_ORDP_10k

This model is the fine tune of NousResearch/Meta-Llama-3-8B using the 12,000 steps of mlabonne/orpo-dpo-mix-40k.

💻 Usage

# Use a pipeline as a high-level helper
from transformers import pipeline

messages = [
    {"role": "user", "content": "Who are you?"},
]
pipe = pipeline("text-generation", model="asharsha30/LLAMA_Harsha_8_B_ORDP_10k")
pipe(messages)

📈Training And Evaluation Report:

Reports from Wandb

https://wandb.ai/asharshavardhana96-texas-a-m-university/huggingface/runs/gky6j4vn?nw=nwuserasharshavardhana96

Acknowledgment:

Huge thanks to Maxime Labonne for his brilliant blog post covering about the techniques related to finetuning the llama models using SFT and ORPO

Evaluated Using:

The model is evaluated using the https://github.com/mlabonne/llm-autoeval and the results are summarized from the generated gist https://gist.github.com/asharsha30-1996/4162fc98d9669aab3080645c54905bd0

Accuracy measure on Neous Benchmarks:

Model AGIEval GPT4All TruthfulQA Bigbench Average
LLAMA_Harsha_8_B_ORDP_10k 35.54 71.15 55.39 37.96 50.01

AGIEval

Task Version Metric Value Stderr
agieval_aqua_rat 0 acc 26.77 ± 2.78
acc_norm 27.17 ± 2.80
agieval_logiqa_en 0 acc 31.34 ± 1.82
acc_norm 33.03 ± 1.84
agieval_lsat_ar 0 acc 18.70 ± 2.58
acc_norm 19.57 ± 2.62
agieval_lsat_lr 0 acc 42.94 ± 2.19
acc_norm 35.10 ± 2.12
agieval_lsat_rc 0 acc 52.42 ± 3.05
acc_norm 43.87 ± 3.03
agieval_sat_en 0 acc 65.53 ± 3.32
acc_norm 54.37 ± 3.48
agieval_sat_en_without_passage 0 acc 41.75 ± 3.44
acc_norm 33.98 ± 3.31
agieval_sat_math 0 acc 42.27 ± 3.34
acc_norm 37.27 ± 3.27

Average: 35.54%

GPT4All

Task Version Metric Value Stderr
arc_challenge 0 acc 49.91 ± 1.46
acc_norm 54.10 ± 1.46
arc_easy 0 acc 80.47 ± 0.81
acc_norm 80.05 ± 0.82
boolq 1 acc 82.08 ± 0.67
hellaswag 0 acc 61.08 ± 0.49
acc_norm 80.26 ± 0.40
openbookqa 0 acc 34.00 ± 2.12
acc_norm 45.00 ± 2.23
piqa 0 acc 79.71 ± 0.94
acc_norm 81.61 ± 0.90
winogrande 0 acc 74.98 ± 1.22

Average: 71.15%

TruthfulQA

Task Version Metric Value Stderr
truthfulqa_mc 1 mc1 37.45 ± 1.69
mc2 55.39 ± 1.50

Average: 55.39%

Bigbench

Task Version Metric Value Stderr
bigbench_causal_judgement 0 multiple_choice_grade 57.37 ± 3.60
bigbench_date_understanding 0 multiple_choice_grade 68.02 ± 2.43
bigbench_disambiguation_qa 0 multiple_choice_grade 31.01 ± 2.89
bigbench_geometric_shapes 0 multiple_choice_grade 20.89 ± 2.15
exact_str_match 0.00 ± 0.00
bigbench_logical_deduction_five_objects 0 multiple_choice_grade 28.40 ± 2.02
bigbench_logical_deduction_seven_objects 0 multiple_choice_grade 20.71 ± 1.53
bigbench_logical_deduction_three_objects 0 multiple_choice_grade 48.67 ± 2.89
bigbench_movie_recommendation 0 multiple_choice_grade 31.60 ± 2.08
bigbench_navigate 0 multiple_choice_grade 50.60 ± 1.58
bigbench_reasoning_about_colored_objects 0 multiple_choice_grade 63.25 ± 1.08
bigbench_ruin_names 0 multiple_choice_grade 34.38 ± 2.25
bigbench_salient_translation_error_detection 0 multiple_choice_grade 21.84 ± 1.31
bigbench_snarks 0 multiple_choice_grade 44.20 ± 3.70
bigbench_sports_understanding 0 multiple_choice_grade 50.30 ± 1.59
bigbench_temporal_sequences 0 multiple_choice_grade 26.30 ± 1.39
bigbench_tracking_shuffled_objects_five_objects 0 multiple_choice_grade 21.36 ± 1.16
bigbench_tracking_shuffled_objects_seven_objects 0 multiple_choice_grade 15.77 ± 0.87
bigbench_tracking_shuffled_objects_three_objects 0 multiple_choice_grade 48.67 ± 2.89

Average: 37.96%

Average score: 50.01%

Elapsed time: 02:36:38

Downloads last month
47
Safetensors
Model size
8.03B params
Tensor type
FP16
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for asharsha30/LLAMA_Harsha_8_B_ORDP_10k

Finetuned
(876)
this model
Quantizations
1 model

Dataset used to train asharsha30/LLAMA_Harsha_8_B_ORDP_10k

Evaluation results