Edit model card

beto-sentiment-analysis-finetuned-ner

This model is a fine-tuned version of finiteautomata/beto-sentiment-analysis on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9250
  • Precision: 0.5603
  • Recall: 0.6436
  • F1: 0.5991
  • Accuracy: 0.9863

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 8e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 24

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
1.4102 1.0 3 1.2732 0.0455 0.0198 0.0276 0.9723
0.7776 2.0 6 0.9025 0.1056 0.1485 0.1235 0.9663
0.6861 3.0 9 0.7874 0.1176 0.1980 0.1476 0.9694
0.2837 4.0 12 0.8528 0.1067 0.2376 0.1472 0.9534
0.3182 5.0 15 0.7798 0.2360 0.3762 0.2901 0.9729
0.1673 6.0 18 0.8645 0.1461 0.2574 0.1864 0.9604
0.2065 7.0 21 0.8130 0.2941 0.5446 0.3819 0.9765
0.0794 8.0 24 0.6841 0.4276 0.6139 0.5041 0.9822
0.0543 9.0 27 0.7113 0.4104 0.5446 0.4681 0.9815
0.0278 10.0 30 0.7865 0.4565 0.6238 0.5272 0.9833
0.0598 11.0 33 0.8356 0.4155 0.5842 0.4856 0.9824
0.0108 12.0 36 0.8104 0.4460 0.6139 0.5167 0.9826
0.0235 13.0 39 0.7986 0.5194 0.6634 0.5826 0.9844
0.0134 14.0 42 0.8175 0.6182 0.6733 0.6445 0.9865
0.0124 15.0 45 0.8575 0.6036 0.6634 0.6321 0.9875
0.0049 16.0 48 0.8822 0.6019 0.6436 0.6220 0.9871
0.0097 17.0 51 0.8696 0.5556 0.6436 0.5963 0.9862
0.0067 18.0 54 0.8728 0.5410 0.6535 0.5919 0.9859
0.0045 19.0 57 0.8807 0.5159 0.6436 0.5727 0.9848
0.004 20.0 60 0.8938 0.52 0.6436 0.5752 0.9851
0.0038 21.0 63 0.9108 0.5203 0.6337 0.5714 0.9852
0.004 22.0 66 0.9243 0.5702 0.6436 0.6047 0.9864
0.0106 23.0 69 0.9261 0.5702 0.6436 0.6047 0.9865
0.004 24.0 72 0.9250 0.5603 0.6436 0.5991 0.9863

Framework versions

  • Transformers 4.22.2
  • Pytorch 1.12.1+cu113
  • Datasets 2.5.2
  • Tokenizers 0.12.1
Downloads last month
4
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.