Edit model card

mDeBERTa-v3-base-xnli-multilingual-zeroshot-v1.1

This model is a fine-tuned version of asadfgglie/mDeBERTa-v3-base-xnli-multilingual-zeroshot-v1.0 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5335
  • F1 Macro: 0.8675
  • F1 Micro: 0.8692
  • Accuracy Balanced: 0.8674
  • Accuracy: 0.8692
  • Precision Macro: 0.8677
  • Recall Macro: 0.8674
  • Precision Micro: 0.8692
  • Recall Micro: 0.8692

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 128
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.06
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss F1 Macro F1 Micro Accuracy Balanced Accuracy Precision Macro Recall Macro Precision Micro Recall Micro
0.1975 0.17 200 0.3474 0.8688 0.8708 0.8678 0.8708 0.8701 0.8678 0.8708 0.8708
0.1974 0.34 400 0.3580 0.8600 0.8624 0.8585 0.8624 0.8621 0.8585 0.8624 0.8624
0.2054 0.51 600 0.3616 0.8520 0.8565 0.8476 0.8565 0.8638 0.8476 0.8565 0.8565
0.2094 0.68 800 0.3772 0.8658 0.8687 0.8630 0.8687 0.8710 0.8630 0.8687 0.8687
0.2118 0.85 1000 0.3701 0.8729 0.8740 0.8747 0.8740 0.8719 0.8747 0.8740 0.8740
0.1948 1.02 1200 0.3778 0.8698 0.8714 0.8702 0.8714 0.8696 0.8702 0.8714 0.8714
0.1447 1.19 1400 0.3964 0.8666 0.8692 0.8642 0.8692 0.8706 0.8642 0.8692 0.8692
0.1723 1.35 1600 0.3855 0.8718 0.8735 0.8716 0.8735 0.8720 0.8716 0.8735 0.8735
0.1476 1.52 1800 0.4164 0.8637 0.8661 0.8620 0.8661 0.8661 0.8620 0.8661 0.8661
0.1515 1.69 2000 0.3958 0.8724 0.8740 0.8725 0.8740 0.8724 0.8725 0.8740 0.8740
0.1378 1.86 2200 0.4390 0.8694 0.8708 0.8699 0.8708 0.8689 0.8699 0.8708 0.8708
0.1332 2.03 2400 0.4535 0.8732 0.8745 0.8740 0.8745 0.8726 0.8740 0.8745 0.8745
0.0913 2.2 2600 0.5235 0.8638 0.8661 0.8625 0.8661 0.8656 0.8625 0.8661 0.8661
0.1076 2.37 2800 0.5339 0.8638 0.8661 0.8623 0.8661 0.8659 0.8623 0.8661 0.8661
0.09 2.54 3000 0.5388 0.8670 0.8687 0.8667 0.8687 0.8672 0.8667 0.8687 0.8687
0.0928 2.71 3200 0.5266 0.8649 0.8666 0.8648 0.8666 0.8650 0.8648 0.8666 0.8666
0.0805 2.88 3400 0.5433 0.8658 0.8677 0.8654 0.8677 0.8663 0.8654 0.8677 0.8677

Eval results

Datasets asadfgglie/nli-zh-tw-all/test asadfgglie/BanBan_2024-10-17-facial_expressions-nli eval_dataset
Accuracy 0.87 0.955 0.869
Inference text/sec (RTX4060ti, batch=128) 36.0 256.0 32.0

Framework versions

  • Transformers 4.33.3
  • Pytorch 2.5.1+cu121
  • Datasets 2.14.7
  • Tokenizers 0.13.3
Downloads last month
0
Inference API
Unable to determine this model's library. Check the docs .

Model tree for asadfgglie/mDeBERTa-v3-base-xnli-multilingual-zeroshot-v1.1

Datasets used to train asadfgglie/mDeBERTa-v3-base-xnli-multilingual-zeroshot-v1.1