Edit model card

This is mt5-base model google/mt5-base in which only Russian and English tokens are left

The model has been fine-tuned for several tasks:

  • translation (opus100 dataset)
  • dialog (daily dialog dataset)

How to use:

# !pip install transformers sentencepiece

from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, T5Tokenizer
import torch

model_name = 'artemnech/enrut5-base'

model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)

def generate(text, **kwargs):
    model.eval()
    inputs = tokenizer(text, return_tensors='pt').to(model.device)
    with torch.no_grad():
        hypotheses = model.generate(**inputs,  **kwargs)
    return tokenizer.decode(hypotheses[0], skip_special_tokens=True)

print(generate('translate ru-en: Я боюсь, что я не завершу доклад в ближайшее время.', num_beams=4,))
# I fear I'm not going to complete the report in the near future.

print(generate("translate en-ru: I'm afraid that I won't finish the report on time.", num_beams=4, max_length = 30))
# Я боюсь, что я не завершу доклад в ближайшее время.

print(generate('dialog: user1>>: Hello', num_beams=2))
# Hi

print(generate('dialog: user1>>: Hello user2>>: Hi user1>>: Would you like to drink something?', num_beams=2))
# I would like to drink a glass of wine.

from collections import deque

context =deque([], maxlen=6)
while True:
    text = input()
    text = 'user1>>: ' + text
    context.append(text)
    answ = generate('dialog: ' + ' '.join(context), num_beams=3, do_sample = True, temperature=1.5)
    context.append('user2>>: ' + answ)

    print('bot: ', answ)
Downloads last month
3
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.