This is mt5-base model google/mt5-base in which only Russian and English tokens are left
The model has been fine-tuned for several tasks:
- translation (opus100 dataset)
- dialog (daily dialog dataset)
How to use:
# !pip install transformers sentencepiece
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, T5Tokenizer
import torch
model_name = 'artemnech/enrut5-base'
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
def generate(text, **kwargs):
model.eval()
inputs = tokenizer(text, return_tensors='pt').to(model.device)
with torch.no_grad():
hypotheses = model.generate(**inputs, **kwargs)
return tokenizer.decode(hypotheses[0], skip_special_tokens=True)
print(generate('translate ru-en: Я боюсь, что я не завершу доклад в ближайшее время.', num_beams=4,))
# I fear I'm not going to complete the report in the near future.
print(generate("translate en-ru: I'm afraid that I won't finish the report on time.", num_beams=4, max_length = 30))
# Я боюсь, что я не завершу доклад в ближайшее время.
print(generate('dialog: user1>>: Hello', num_beams=2))
# Hi
print(generate('dialog: user1>>: Hello user2>>: Hi user1>>: Would you like to drink something?', num_beams=2))
# I would like to drink a glass of wine.
from collections import deque
context =deque([], maxlen=6)
while True:
text = input()
text = 'user1>>: ' + text
context.append(text)
answ = generate('dialog: ' + ' '.join(context), num_beams=3, do_sample = True, temperature=1.5)
context.append('user2>>: ' + answ)
print('bot: ', answ)
- Downloads last month
- 3
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.