wav2vec-read_aloud

This model is a fine-tuned version of facebook/w2v-bert-2.0 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1115
  • Pcc Accuracy: 0.7918
  • Pcc Fluency: 0.7940
  • Pcc Total Score: 0.8472
  • Pcc Content: 0.8160

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.00055
  • train_batch_size: 2
  • eval_batch_size: 6
  • seed: 42
  • gradient_accumulation_steps: 12
  • total_train_batch_size: 24
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.25
  • num_epochs: 14

Training results

Training Loss Epoch Step Validation Loss Pcc Accuracy Pcc Fluency Pcc Total Score Pcc Content
0.1483 1.94 500 0.1659 0.7256 0.6982 0.7616 0.7480
0.1338 3.89 1000 0.1369 0.7706 0.7680 0.8154 0.7835
0.124 5.83 1500 0.1754 0.6686 0.6459 0.7110 0.6823
0.1147 7.77 2000 0.1149 0.7838 0.7848 0.8368 0.8048
0.1024 9.72 2500 0.1135 0.7802 0.7819 0.8340 0.8048
0.0945 11.66 3000 0.1168 0.7891 0.7876 0.8418 0.8095
0.0945 13.61 3500 0.1115 0.7918 0.7940 0.8472 0.8160

Framework versions

  • Transformers 4.37.0
  • Pytorch 2.1.2
  • Datasets 2.18.0
  • Tokenizers 0.15.1
Downloads last month
13
Safetensors
Model size
250M params
Tensor type
F32
ยท
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for arslanarjumand/wav2vec-read_aloud

Finetuned
(229)
this model

Space using arslanarjumand/wav2vec-read_aloud 1