fine_tuned_t5_small_model-naive-approach

This model is a fine-tuned version of t5-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 3.3579
  • Rouge1: 0.3553
  • Rouge2: 0.1154
  • Rougel: 0.2155
  • Rougelsum: 0.2154
  • Gen Len: 130.1211
  • Bert F1: 0.8401

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len Bert F1
4.3358 2.1053 200 3.5813 0.3207 0.1049 0.1965 0.1964 112.5737 0.8379
3.6728 4.2105 400 3.4776 0.3307 0.1098 0.2012 0.2007 120.2947 0.8382
3.5819 6.3158 600 3.4250 0.3422 0.114 0.2086 0.2084 122.5947 0.8399
3.5355 8.4211 800 3.3926 0.345 0.1142 0.2106 0.2106 125.2474 0.8398
3.5078 10.5263 1000 3.3709 0.3475 0.113 0.2118 0.2117 128.4211 0.8386
3.4899 12.6316 1200 3.3615 0.3538 0.1145 0.2157 0.2155 130.8632 0.8396
3.4672 14.7368 1400 3.3579 0.3553 0.1154 0.2155 0.2154 130.1211 0.8401

Framework versions

  • Transformers 4.45.1
  • Pytorch 2.4.0
  • Datasets 3.0.1
  • Tokenizers 0.20.0
Downloads last month
13
Safetensors
Model size
60.5M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for ariW/fine_tuned_t5_small_model-naive-approach

Base model

google-t5/t5-small
Finetuned
(1750)
this model