Text Generation
Transformers
Safetensors
mistral
Generated from Trainer
conversational
text-generation-inference
Inference Endpoints
File size: 3,638 Bytes
dedfb97
 
406b427
dedfb97
 
 
 
 
088a3fe
 
 
408544f
dedfb97
 
 
 
 
 
 
088a3fe
 
 
 
dedfb97
 
 
 
 
 
 
 
 
 
 
269177b
 
 
 
 
 
 
 
 
 
 
 
 
dedfb97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
088a3fe
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
---
license: apache-2.0
base_model: argilla/zephyr-7b-spin-iter1-v0
tags:
- generated_from_trainer
model-index:
- name: zephyr-7b-spin-iter2-v0
  results: []
datasets:
- argilla/10k_prompts_SPIN_iter2_zephyr_top
- argilla/10k_prompts_SPIN_iter1_zephyr_top
- DIBT/10k_prompts_ranked
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# zephyr-7b-spin-iter2-v0

This model is a fine-tuned version of [argilla/zephyr-7b-spin-iter1-v0](https://huggingface.co/argilla/zephyr-7b-spin-iter1-v0) on the 
[argilla/10k_prompts_SPIN_iter2_zephyr_top](https://huggingface.co/datasets/argilla/10k_prompts_SPIN_iter2_zephyr_top)
and the [argilla/10k_prompts_SPIN_iter1_zephyr_top](https://huggingface.co/datasets/argilla/10k_prompts_SPIN_iter1_zephyr_top) dataset.

It achieves the following results on the evaluation set:
- Loss: 0.1253
- Rewards/real: -0.5683
- Rewards/generated: -4.9538
- Rewards/accuracies: 0.9479
- Rewards/margins: 4.3854
- Logps/generated: -739.3701
- Logps/real: -278.2851
- Logits/generated: -2.8430
- Logits/real: -2.8375


## MT-Bench results

| Model                   | 1st Turn Score | 2nd Turn Score | Average Score |
|-------------------------|----------------|----------------|---------------|
| zephyr-7b-sft-full      | 6.6625         | 6.0250         | 6.34375       |
| zephyr-7b-spin-iter0-v0 | 6.64375        | 6.1750         | 6.409375      |
| zephyr-7b-spin-iter1-v0 | 6.90625        | 6.3000         | 6.603125      |
| zephyr-7b-spin-iter2-v0 | **7.1375**     | 6.3125         | 6.725000      |
| zephyr-7b-spin-iter3-v0 | 7.09375        | **6.4500**     | **6.771875**  |



## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-07
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 2.0

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rewards/real | Rewards/generated | Rewards/accuracies | Rewards/margins | Logps/generated | Logps/real | Logits/generated | Logits/real |
|:-------------:|:-----:|:----:|:---------------:|:------------:|:-----------------:|:------------------:|:---------------:|:---------------:|:----------:|:----------------:|:-----------:|
| 5.8769        | 0.49  | 25   | 0.1890          | -0.1680      | -2.9833           | 0.9375             | 2.8153          | -719.6649       | -274.2817  | -2.7940          | -2.8382     |
| 0.1202        | 0.97  | 50   | 0.1440          | -0.4164      | -4.2256           | 0.9479             | 3.8092          | -732.0879       | -276.7652  | -2.8395          | -2.8439     |
| 0.0754        | 1.46  | 75   | 0.1298          | -0.5468      | -4.7565           | 0.9583             | 4.2097          | -737.3973       | -278.0700  | -2.8411          | -2.8388     |
| 0.0621        | 1.94  | 100  | 0.1253          | -0.5683      | -4.9538           | 0.9479             | 4.3854          | -739.3701       | -278.2851  | -2.8430          | -2.8375     |


### Framework versions

- Transformers 4.37.0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.15.2