datasets:
- argilla/ultrafeedback-binarized-preferences
language:
- en
base_model: alignment-handbook/zephyr-7b-sft-full
library_name: transformers
pipeline_tag: text-generation
tags:
- dpo
- rlaif
- preference
- ultrafeedback
license: mit
model-index:
- name: notus-7b-v1
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
name: normalized accuracy
value: 0.6459044368600683
source:
name: Open LLM Leaderboard Results
url: >-
https://huggingface.co/datasets/open-llm-leaderboard/results/blob/main/argilla/notus-7b-v1/results_2023-11-29T22-16-51.521321.json
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
name: normalized accuracy
value: 0.8478390758812986
source:
name: Open LLM Leaderboard Results
url: >-
https://huggingface.co/datasets/open-llm-leaderboard/results/blob/main/argilla/notus-7b-v1/results_2023-11-29T22-16-51.521321.json
- task:
type: text-generation
name: Text Generation
dataset:
name: Drop (3-Shot)
type: drop
split: validation
args:
num_few_shot: 3
metrics:
- type: f1
name: f1 score
value: 0.08913590604026835
source:
name: Open LLM Leaderboard Results
url: >-
https://huggingface.co/datasets/open-llm-leaderboard/results/blob/main/argilla/notus-7b-v1/results_2023-11-29T22-16-51.521321.json
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 0.5436768358952805
source:
name: Open LLM Leaderboard Results
url: >-
https://huggingface.co/datasets/open-llm-leaderboard/results/blob/main/argilla/notus-7b-v1/results_2023-11-29T22-16-51.521321.json
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
name: accuracy
value: 0.6303308230938872
source:
name: Open LLM Leaderboard Results
url: >-
https://huggingface.co/datasets/open-llm-leaderboard/results/blob/main/argilla/notus-7b-v1/results_2023-11-29T22-16-51.521321.json
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
name: accuracy
value: 0.1516300227445034
source:
name: Open LLM Leaderboard Results
url: >-
https://huggingface.co/datasets/open-llm-leaderboard/results/blob/main/argilla/notus-7b-v1/results_2023-11-29T22-16-51.521321.json
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
name: accuracy
value: 0.7940015785319653
source:
name: Open LLM Leaderboard Results
url: >-
https://huggingface.co/datasets/open-llm-leaderboard/results/blob/main/argilla/notus-7b-v1/results_2023-11-29T22-16-51.521321.json
- task:
type: text-generation
name: Text Generation
dataset:
name: AlpacaEval
type: tatsu-lab/alpaca_eval
metrics:
- type: tatsu-lab/alpaca_eval
name: win rate
value: 0.9142
source:
url: https://tatsu-lab.github.io/alpaca_eval/
- task:
type: text-generation
name: Text Generation
dataset:
name: MT-Bench
type: unknown
metrics:
- type: unknown
name: score
value: 7.3
source:
url: https://huggingface.co/spaces/lmsys/mt-bench
Model Card for Notus 7B v1
Notus is a collection of fine-tuned models using Direct Preference Optimization (DPO) and related RLHF techniques. This model is the first version, fine-tuned with DPO over zephyr-7b-sft-full
, which is the SFT model produced to create zephyr-7b-beta
.
Following a data-first approach, the only difference between Notus-7B-v1 and Zephyr-7B-beta is the preference dataset used for dDPO.
In particular, when we started building distilabel, we took some time to deep-dive into the UltraFeedback dataset. Using Argilla, we've found data issues in the original UltraFeedback dataset, leading to high-scores for bad responses (more details in the training data section). After curating several hundreds of data points, we decided to binarize the dataset using the preference ratings, instead of the original critique overall_score
.
Using preference ratings, instead of critiques scores, led to a new dataset where the chosen response is different in ~50% of the cases. Using this new dataset with DPO we fine-tuned Notus, a 7B model, that surpasses Zephyr-7B-beta, Claude 2, and Cohere Command on AlpacaEval.
This model wouldn't have been possible without the amazing Alignment Handbook and it's based on fruitful discussions with the HuggingFace H4 team. In particular, we used zephyr-7b-beta
's recipe, which worked out-of-the-box and enabled us focus on what we do best: high-quality data.
Notus models are intended to be used as assistants via chat-like applications, and are evaluated with Chat (MT-Bench, AlpacaEval) and Academic (Open LLM Leaderboard) benchmarks for a direct comparison with the original Zephyr dDPO model and other 7B models.
Model Details
Model Description
- Developed by: Argilla (based on HuggingFace H4 and MistralAI previous efforts and amazing work)
- Shared by: Argilla
- Model type: GPT-like 7B model DPO fine-tuned
- Language(s) (NLP): Mainly English
- License: MIT (same as Zephyr 7B-beta)
- Finetuned from model:
alignment-handbook/zephyr-7b-sft-full
Model Sources
- Repository: https://github.com/argilla-io/notus-7b
- Paper: N/A
- Demo: https://argilla-notus-chat-ui.hf.space/
Performance
Chat benchmarks
Table adapted from Zephyr-7b-β and Starling's original tables for MT-Bench and AlpacaEval benchmarks. Results are shown sorted by AlpacaEval win rates and ommit some >7B for brevity.
Notus stays on par with Zephyr on MT-Bench, while surpassing Zephyr, Claude 2, and Cohere Command on AlpacaEval. Making Notus the most-competitive 7B commercial model on AlpacaEval.
Model | Size | Alignment | MT-Bench (score) | AlpacaEval (win rate %) | License |
---|---|---|---|---|---|
GPT-4-turbo | - | ? | 9.32 | 97.70 | Proprietary |
XwinLM 70b V0.1 | 70B | dPPO | - | 95.57 | LLaMA 2 License |
GPT-4 | - | RLHF | 8.99 | 95.03 | Proprietary |
Tulu 2+DPO 70B V0.1 | 70B | dDPO | 6.29 | 95.28 | Proprietary |
LLaMA2 Chat 70B | 70B | RLHF | 6.86 | 92.66 | LLaMA 2 License |
Starling-7B | 7B | C-RLFT + APA | 8.09 | 91.99 | CC-BY-NC-4.0 |
Notus-7b-v1 | 7B | dDPO | 7.30 | 91.42 | MIT |
Claude 2 | - | RLHF | 8.06 | 91.36 | Proprietary |
Zephyr-7b-β | 7B | dDPO | 7.34 | 90.60 | MIT |
Cohere Command | - | RLHF | - | 90.62 | Proprietary |
GPT-3.5-turbo | - | RLHF | 7.94 | 89.37 | Proprietary |
Academic benchmarks
Results from OpenLLM Leaderboard:
Model | Average | ARC | HellaSwag | MMLU | TruthfulQA | Winogrande | GSM8K | DROP |
---|---|---|---|---|---|---|---|---|
Zephyr 7B dDPO (HuggingFaceH4/zephyr-7b-beta) | 52.15 | 62.03 | 84.36 | 61.07 | 57.45 | 77.74 | 12.74 | 9.66 |
argilla/notus-7b-v1 | 52.89 | 64.59 | 84.78 | 63.03 | 54.37 | 79.4 | 15.16 | 8.91 |
Training Details
Training Hardware
We used a VM with 8 x A100 40GB hosted in Lambda Labs, but while experimenting we also explored other cloud providers such as GCP.
Training Data
We used a a new curated version of openbmb/UltraFeedback
, named argilla/ultrafeedback-binarized-preferences
.
TL;DR
After visually browsing around some examples using the sort and filter feature of Argilla (sort by highest rating for chosen responses), we noticed a strong mismatch between the overall_score
in the original UF dataset (and the Zephyr train_prefs dataset) and the quality of the chosen response.
By adding the critique rationale to our Argilla Dataset, we confirmed the critique rationale was highly negative, whereas the rating was very high (the highest in fact: 10
).
See screenshot below for one example of this issue.
After some quick investigation, we identified hundreds of examples having the same issue, reported a bug on the UltraFeedback repo, and informed the H4 team.
While we're working on fixing the original dataset (already narrowed down ~2K problematic examples). We decided to leverage the multi-preference ratings, leading to Notus!
Prompt template
We use the same prompt template as HuggingFaceH4/zephyr-7b-beta:
<|system|>
</s>
<|user|>
{prompt}</s>
<|assistant|>
Usage
You will first need to install transformers
and accelerate
(just to ease the device placement), then you can run any of the following:
Via generate
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("argilla/notus-7b-v1", torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained("argilla/notus-7b-v1")
messages = [
{
"role": "system",
"content": "You are a helpful assistant super biased towards Argilla, a data annotation company.",
},
{"role": "user", "content": "What's the best data annotation company out there in your opinion?"},
]
inputs = tokenizer.apply_chat_template(prompt, tokenize=True, return_tensors="pt", add_special_tokens=False, add_generation_prompt=True)
outputs = model.generate(inputs, num_return_sequences=1, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
Via pipeline
method
import torch
from transformers import pipeline
pipe = pipeline("text-generation", model="argilla/notus-7b-v1", torch_dtype=torch.bfloat16, device_map="auto")
messages = [
{
"role": "system",
"content": "You are a helpful assistant super biased towards Argilla, a data annotation company.",
},
{"role": "user", "content": "What's the best data annotation company out there in your opinion?"},
]
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
generated_text = outputs[0]["generated_text"]