File size: 16,106 Bytes
e24828f e903635 3455ea2 e903635 517e565 e903635 2ebbfb4 b875065 fbe2d77 b875065 e24828f 57cc717 2ebbfb4 f23f4cf 2ebbfb4 e24828f e2232ed 57cc717 f818073 1c1b159 62c23f5 87ea670 57cc717 dfabe92 1c1b159 1592da4 1806313 87ea670 1c1b159 57cc717 e903635 4e0c2b0 e903635 e24828f e903635 cfa4403 e903635 2ebbfb4 e903635 8194e3d e903635 882129c e903635 cfa4403 e903635 cfa4403 57cc717 3455ea2 f891dd2 3455ea2 f891dd2 3455ea2 cfa4403 8194e3d 2ebbfb4 cfa4403 e903635 83af961 4e0c2b0 e903635 8194e3d 57cc717 8194e3d e903635 1806313 57cc717 75dfa6c 202633d 1806313 75dfa6c 202633d 75dfa6c 1806313 202633d 1806313 87ea670 57cc717 517e565 57cc717 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 |
---
datasets:
- argilla/ultrafeedback-binarized-preferences
language:
- en
base_model: alignment-handbook/zephyr-7b-sft-full
library_name: transformers
pipeline_tag: text-generation
tags:
- dpo
- rlaif
- preference
- ultrafeedback
license: mit
model-index:
- name: notus-7b-v1
results:
# AI2 Reasoning Challenge (25-Shot)
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
name: normalized accuracy
value: 0.6459044368600683
source:
name: Open LLM Leaderboard Results
url: https://huggingface.co/datasets/open-llm-leaderboard/results/blob/main/argilla/notus-7b-v1/results_2023-11-29T22-16-51.521321.json
# HellaSwag (10-shot)
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
name: normalized accuracy
value: 0.8478390758812986
source:
name: Open LLM Leaderboard Results
url: https://huggingface.co/datasets/open-llm-leaderboard/results/blob/main/argilla/notus-7b-v1/results_2023-11-29T22-16-51.521321.json
# DROP (3-shot)
- task:
type: text-generation
name: Text Generation
dataset:
name: Drop (3-Shot)
type: drop
split: validation
args:
num_few_shot: 3
metrics:
- type: f1
name: f1 score
value: 0.08913590604026835
source:
name: Open LLM Leaderboard Results
url: https://huggingface.co/datasets/open-llm-leaderboard/results/blob/main/argilla/notus-7b-v1/results_2023-11-29T22-16-51.521321.json
# TruthfulQA (0-shot)
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 0.5436768358952805
source:
name: Open LLM Leaderboard Results
url: https://huggingface.co/datasets/open-llm-leaderboard/results/blob/main/argilla/notus-7b-v1/results_2023-11-29T22-16-51.521321.json
# MMLU (5-Shot)
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
name: accuracy
value: 0.6303308230938872 # average accuracy
source:
name: Open LLM Leaderboard Results
url: https://huggingface.co/datasets/open-llm-leaderboard/results/blob/main/argilla/notus-7b-v1/results_2023-11-29T22-16-51.521321.json
# GSM8k (5-shot)
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
name: accuracy
value: 0.1516300227445034
source:
name: Open LLM Leaderboard Results
url: https://huggingface.co/datasets/open-llm-leaderboard/results/blob/main/argilla/notus-7b-v1/results_2023-11-29T22-16-51.521321.json
# Winogrande (5-shot)
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
name: accuracy
value: 0.7940015785319653
source:
name: Open LLM Leaderboard Results
url: https://huggingface.co/datasets/open-llm-leaderboard/results/blob/main/argilla/notus-7b-v1/results_2023-11-29T22-16-51.521321.json
# AlpacaEval
- task:
type: text-generation
name: Text Generation
dataset:
name: AlpacaEval
type: tatsu-lab/alpaca_eval
metrics:
- type: tatsu-lab/alpaca_eval
name: win rate
value: 0.9142
source:
url: https://tatsu-lab.github.io/alpaca_eval/
# MT-Bench
- task:
type: text-generation
name: Text Generation
dataset:
name: MT-Bench
type: unknown
metrics:
- type: unknown
name: score
value: 7.30
source:
url: https://huggingface.co/spaces/lmsys/mt-bench
---
<div align="center">
<img src="https://cdn-uploads.huggingface.co/production/uploads/60f0608166e5701b80ed3f02/dj-spsk9eXMMXVGxK6jRz.png" alt="A banner representing Notus, the wind god of the south, in a mythical and artistic style. The banner features a strong, swirling breeze, embodying the warm, wet character of the southern wind. Gracefully flowing across the scene are several paper planes, caught in the gentle yet powerful gusts of Notus. The background is a blend of warm colors, symbolizing the heat of the south, with hints of blue and green to represent the moisture carried by this wind. The overall atmosphere is one of dynamic movement and warmth."/>
</div>
# Model Card for Notus 7B v1
Notus is a collection of fine-tuned models using Direct Preference Optimization (DPO) and related RLHF techniques. This model is the first version, fine-tuned with DPO over `zephyr-7b-sft-full`, which is the SFT model produced to create `zephyr-7b-beta`.
Following a **data-first** approach, the only difference between Notus-7B-v1 and Zephyr-7B-beta is the preference dataset used for dDPO.
In particular, when we started building [distilabel](https://github.com/argilla-io/distilabel), we invested time understanding and deep-diving into the UltraFeedback dataset. Using [Argilla](https://argilla.io/), we've found data issues in the original UltraFeedback dataset, leading to high-scores for bad responses (more details in the training data section). After curating several hundreds of data points, we decided to binarize the dataset using the preference ratings, instead of the original critique `overall_score`, and verified the new dataset with Argilla.
Using preference ratings, instead of critiques scores, led to a new dataset where the chosen response is different in ~50% of the cases. Using this new dataset with DPO we fine-tuned Notus, a 7B model, that **surpasses Zephyr-7B-beta and Claude 2 on AlpacaEval**.
> **Important note**: While we opted for the average of multi-aspect ratings, while we fix the original dataset, a very interesting open question remains: once critique data is fixed, what works better? using the critique scores or the preference ratings? We're very excited to do this comparison in the coming weeks, stay tuned!
This model **wouldn't have been possible without the amazing [Alignment Handbook](https://github.com/huggingface/alignment-handbook), [OpenBMB](https://www.openbmb.cn/home) for releasing the Ultrafeedback dataset**, and it's based on fruitful discussions with the HuggingFace H4 team. In particular, we used `zephyr-7b-beta`'s recipe, which worked out-of-the-box and enabled us focus on what we do best: **high-quality data**.
Notus models are intended to be used as assistants via chat-like applications, and are evaluated with Chat (MT-Bench, AlpacaEval) and Academic (Open LLM Leaderboard) benchmarks for a direct comparison with the original Zephyr dDPO model and other 7B models.
> **Why Notus?**: Notus name comes from the ancient Greek god Notus, as a wink to Zephyr, which comes from the ancient Greek god Zephyrus; with the difference that Notus is the god of the south wind, and Zephyr the god of the west wind. More information at https://en.wikipedia.org/wiki/Anemoi.
## Model Details
### Model Description
- **Developed by:** Argilla (based on HuggingFace H4 and MistralAI previous efforts and amazing work)
- **Shared by:** Argilla
- **Model type:** GPT-like 7B model DPO fine-tuned
- **Language(s) (NLP):** Mainly English
- **License:** MIT (same as Zephyr 7B-beta)
- **Finetuned from model:** [`alignment-handbook/zephyr-7b-sft-full`](https://huggingface.co/alignment-handbook/zephyr-7b-sft-full)
### Model Sources
- **Repository:** https://github.com/argilla-io/notus
- **Paper:** N/A
- **Demo:** https://argilla-notus-chat-ui.hf.space/
## Performance
### Chat benchmarks
Table adapted from Zephyr-7b-β and Starling's original tables for [MT-Bench](https://huggingface.co/spaces/lmsys/mt-bench) and [AlpacaEval](https://tatsu-lab.github.io/alpaca_eval/) benchmarks. Results are shown sorted by AlpacaEval win rates and ommit some >7B for brevity.
Notus stays on par with Zephyr on MT-Bench, while surpassing Zephyr, Claude 2, and Cohere Command on AlpacaEval. Making Notus the most-competitive 7B commercial model on AlpacaEval.
<table>
<tr>
<th>Model</th>
<th>Size</th>
<th>Alignment</th>
<th>MT-Bench (score)</th>
<th>AlpacaEval (win rate %)</th>
<th>License</th>
</tr>
<tr>
<td>GPT-4-turbo</td>
<td>-</td>
<td>?</td>
<td>9.32</td>
<td>97.70</td>
<td>Proprietary</td>
</tr>
<tr>
<td>XwinLM 70b V0.1</td>
<td>70B</td>
<td>dPPO</td>
<td>-</td>
<td>95.57</td>
<td>LLaMA 2 License</td>
</tr>
<tr>
<td>GPT-4</td>
<td>-</td>
<td>RLHF</td>
<td>8.99</td>
<td>95.03</td>
<td>Proprietary</td>
</tr>
<tr>
<td>Tulu 2+DPO 70B V0.1</td>
<td>70B</td>
<td>dDPO</td>
<td>6.29</td>
<td>95.28</td>
<td>Proprietary</td>
</tr>
<tr>
<td>LLaMA2 Chat 70B</td>
<td>70B</td>
<td>RLHF</td>
<td>6.86</td>
<td>92.66</td>
<td>LLaMA 2 License</td>
</tr>
<tr>
<td>Starling-7B</td>
<td>7B</td>
<td>C-RLFT + APA</td>
<td><strong>8.09</strong></td>
<td><strong>91.99</strong></td>
<td>CC-BY-NC-4.0</td>
</tr>
<tr style="background-color: #FFFF99;">
<td><strong>Notus-7b-v1</strong></td>
<td>7B</td>
<td>dDPO</td>
<td>7.30</td>
<td>91.42</td>
<td>MIT</td>
</tr>
<tr>
<td>Claude 2</td>
<td>-</td>
<td>RLHF</td>
<td>8.06</td>
<td>91.36</td>
<td>Proprietary</td>
</tr>
<tr>
<td>Zephyr-7b-β</td>
<td>7B</td>
<td>dDPO</td>
<td>7.34</td>
<td>90.60</td>
<td>MIT</td>
</tr>
<tr>
<td>Cohere Command</td>
<td>-</td>
<td>RLHF</td>
<td>-</td>
<td>90.62</td>
<td>Proprietary</td>
</tr>
<tr>
<td>GPT-3.5-turbo</td>
<td>-</td>
<td>RLHF</td>
<td>7.94</td>
<td>89.37</td>
<td>Proprietary</td>
</tr>
</table>
## Academic benchmarks
Results from [OpenLLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard):
| Model | Average | ARC | HellaSwag | MMLU | TruthfulQA | Winogrande | GSM8K | DROP |
|-----------------------------------------------|---------|-------|-----------|-------|------------|------------|-------|-------|
| Zephyr 7B dDPO (HuggingFaceH4/zephyr-7b-beta) | 52.15 | 62.03 | 84.36 | 61.07 | **57.45** | 77.74 | 12.74 | **9.66** |
| argilla/notus-7b-v1 | **52.89** | **64.59** | **84.78** | **63.03** | 54.37 | **79.4** | **15.16** | 8.91 |
⚠️ As pointed out by [AllenAI researchers](https://twitter.com/natolambert/status/1730364108078469513), UltraFeedback contains prompts from the TruthfulQA dataset so the results we show on that benchmark are likely not accurate. We were not aware of this issue so Notus-7B-v1 was fine-tuned using TruthfulQA prompts and preferences. For future releases, we will remove TruthfulQA prompts.
## Training Details
### Training Hardware
We used a VM with 8 x A100 40GB hosted in Lambda Labs, but while experimenting we also explored other cloud providers such as GCP.
### Training Data
We used a a new curated version of [`openbmb/UltraFeedback`](https://huggingface.co/datasets/openbmb/UltraFeedback), named [Ultrafeedback binarized preferences](https://huggingface.co/datasets/argilla/ultrafeedback-binarized-preferences).
TL;DR
After visually browsing around some examples using the sort and filter feature of Argilla (sort by highest rating for chosen responses), we noticed a strong mismatch between the `overall_score` in the original UF dataset (and the Zephyr train_prefs dataset) and the quality of the chosen response.
By adding the critique rationale to our Argilla Dataset, **we confirmed the critique rationale was highly negative, whereas the rating was very high** (for most cases it was the highest: `10`).
See screenshot below for one example of this issue.
After some quick investigation, we:
* identified hundreds of examples having the same issue,
* reported a bug on the [UltraFeedback repo](https://github.com/OpenBMB/UltraFeedback/issues/8),
* and informed the H4 team which was incredibly responsive and ran an additional experiment to validate the new rating binarization approach.
While we're working on fixing the original dataset (already narrowed down ~2K problematic examples). We decided to leverage the multi-preference ratings, leading to Notus!
![image/png](https://cdn-uploads.huggingface.co/production/uploads/60420dccc15e823a685f2b03/M9qCKyAB_G1MbVBAPeitd.png)
> **Important note**: While we opted for the average of ratings while we fix the dataset, there's still a very interesting open question: once data is fixed, what works better? using the critique scores or the preference ratings? We're very excited to do this comparison in the coming weeks, stay tuned!
You can find more details about the dataset analysis and curation on the [ultrafeedback-binarized-preferences dataset card](https://huggingface.co/datasets/argilla/ultrafeedback-binarized-preferences).
## Prompt template
We use the same prompt template as [HuggingFaceH4/zephyr-7b-beta](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta):
```
<|system|>
</s>
<|user|>
{prompt}</s>
<|assistant|>
```
## Usage
You will first need to install `transformers` and `accelerate` (just to ease the device placement), then you can run any of the following:
### Via `generate`
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("argilla/notus-7b-v1", torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained("argilla/notus-7b-v1")
messages = [
{
"role": "system",
"content": "You are a helpful assistant super biased towards Argilla, a data annotation company.",
},
{"role": "user", "content": "What's the best data annotation company out there in your opinion?"},
]
inputs = tokenizer.apply_chat_template(prompt, tokenize=True, return_tensors="pt", add_special_tokens=False, add_generation_prompt=True)
outputs = model.generate(inputs, num_return_sequences=1, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
```
### Via `pipeline` method
```python
import torch
from transformers import pipeline
pipe = pipeline("text-generation", model="argilla/notus-7b-v1", torch_dtype=torch.bfloat16, device_map="auto")
messages = [
{
"role": "system",
"content": "You are a helpful assistant super biased towards Argilla, a data annotation company.",
},
{"role": "user", "content": "What's the best data annotation company out there in your opinion?"},
]
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
generated_text = outputs[0]["generated_text"]
``` |