mlabonne's picture
update license
e454528 verified
|
raw
history blame
3.67 kB
---
license: cc-by-nc-4.0
base_model: mlabonne/Marcoro14-7B-slerp
datasets:
- argilla/distilabel-intel-orca-dpo-pairs
language:
- en
tags:
- distilabel
- dpo
- rlaif
- rlhf
- merge
- mergekit
---
# ⚗️ distilabeled Marcoro14 7B Slerp
<p align="center">
<a href="https://github.com/argilla-io/distilabel">
<img src="https://raw.githubusercontent.com/argilla-io/distilabel/main/docs/assets/distilabel-badge-light.png" alt="Built with Distilabel" width="200" height="32"/>
</a>
</p>
## Introduction
This model is a new DPO fine-tune of our new open dataset [argilla/distilabel-intel-orca-dpo-pairs](https://huggingface.co/datasets/argilla/distilabel-intel-orca-dpo-pairs), on the [mlabonne/Marcoro14-7B-slerp](https://huggingface.co/mlabonne/Marcoro14-7B-slerp) model. You can find more information of the "distilabeled" dataset used at this repo [argilla/distilabeled-Hermes-2.5-Mistral-7B](https://huggingface.co/argilla/distilabeled-Hermes-2.5-Mistral-7B/blob/main/README.md#introduction), and visit [distilabel](https://github.com/argilla-io/distilabel).
## Training details
As we did with [Notus](https://argilla.io/blog/notus7b/), we wanted a reproducible recipe to test the impact of data quality.
And we're lucky to have so many amazing folks in the open community contributing reproducible, easy-to-use training scripts and recipes. This time, [Maxime Labonne](https://twitter.com/maximelabonne) had shared a [Colab](https://colab.research.google.com/drive/15iFBr1xWgztXvhrj5I9fBv20c7CFOPBE?usp=sharing) to fine-tune OpenHermes with DPO and the original Intel's dataset, perfect! We just updated the base model to [mlabonne/Marcoro14-7B-slerp](https://huggingface.co/mlabonne/Marcoro14-7B-slerp), and applied the same dataset recipe we used for [argilla/distilabeled-Hermes-2.5-Mistral-7B](https://huggingface.co/argilla/distilabeled-Hermes-2.5-Mistral-7B/blob/main/README.md#introduction):
```python
from datasets import load_dataset
# Instead of this:
# dataset = load_dataset("Intel/orca_dpo_pairs", split="train")
# we did this
dataset = load_dataset("argilla/distilabel-intel-orca-dpo-pairs", split="train")
dataset = dataset.filter(
lambda r:
r["status"] != "tie" and
r["chosen_score"] >= 8 and
not r["in_gsm8k_train"]
)
```
## Benchmark results
For benchmarking we used the famous "Nous" or "Teknium" benchmark. You can find below an overview, including our first experiment with a less ambitious dataset filtering (removing ties and `score>5`).
For running the benchmark we used another awesome contribution from Maxime: [LLM AutoEval](https://github.com/mlabonne/llm-autoeval), check it out!
| Model |AGIEval|GPT4ALL|TruthfulQA|Bigbench|Average|
|-------------------------|------:|------:|---------:|-------:|------:|
|[argilla/distilabeled-Marcoro14-7B-slerp](https://huggingface.co/argilla/distilabeled-Marcoro14-7B-slerp)| **45.4**| **76.47**| **65.46**| **47.19**| **58.63**|
|[Marcoro14-7B-slerp](https://huggingface.co/mlabonne/Marcoro14-7B-slerp) | 44.66| 76.24| 64.15| 45.64| 57.67|
|[argilla/distilabeled-Hermes-2.5-Mistral-7B](https://huggingface.co/argilla/distilabeled-Hermes-2.5-Mistral-7B) | 44.64 | 73.35 | 55.96 | 42.21 | 54.04 |
### Training Hardware
We used 1 x A100 80GB in runpod for less than 1 hour.
## Acknowledgements
We'd like to thank the amazing open community and in particular:
* The Intel team for publishing a great open dataset and show how well it worked in the first place
* Teknium and NousResearch for their awesome work and models.
* Maxime for sharing such great resources.