SetFit with sentence-transformers/paraphrase-mpnet-base-v2

This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-mpnet-base-v2 as the Sentence Transformer embedding model. A OneVsRestClassifier instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Evaluation

Metrics

Label Accuracy
all 0.9161

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("ardi555/setfit_mpnet_reuters21578_reducedto15")
# Run inference
preds = model("The European Community Commission
confirmed it granted export licences for 59,000 tonnes of
current series white sugar at a maximum export rebate of 45.678
European Currency Units (ECUs) per 100 kilos.
    Out of this, traders in West Germany received 34,750
tonnes, in the U.K. 13,000, in Denmark 7,250 tonnes and in
France 4,000 tonnes.
 REUTER
")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 20 204.4467 1075

Training Hyperparameters

  • batch_size: (8, 8)
  • num_epochs: (1, 1)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 20
  • body_learning_rate: (2e-05, 2e-05)
  • head_learning_rate: 2e-05
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • l2_weight: 0.01
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0013 1 0.2676 -
0.0667 50 0.1617 -
0.1333 100 0.0869 -
0.2 150 0.0583 -
0.2667 200 0.0766 -
0.3333 250 0.0578 -
0.4 300 0.0483 -
0.4667 350 0.0374 -
0.5333 400 0.0372 -
0.6 450 0.039 -
0.6667 500 0.0367 -
0.7333 550 0.0378 -
0.8 600 0.0299 -
0.8667 650 0.0317 -
0.9333 700 0.0308 -
1.0 750 0.0293 -

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.1.0
  • Sentence Transformers: 3.2.1
  • Transformers: 4.42.2
  • PyTorch: 2.5.1+cu121
  • Datasets: 3.1.0
  • Tokenizers: 0.19.1

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
3
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
Inference API (serverless) has been turned off for this model.

Model tree for ardi555/setfit_mpnet_reuters21578_reducedto15

Finetuned
(260)
this model

Evaluation results