See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: fxmarty/really-tiny-falcon-testing
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 62950d35147ac7fd_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/62950d35147ac7fd_train_data.json
type:
field_input: new-context
field_instruction: new-instruction
field_output: new-response
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: true
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: ardaspear/5f82e1f9-da65-46bd-8980-ad940e82e5da
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 128
lora_dropout: 0.1
lora_fan_in_fan_out: true
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_memory:
0: 72GB
max_steps: 100
micro_batch_size: 4
mlflow_experiment_name: /tmp/62950d35147ac7fd_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: false
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: leixa-personal
wandb_mode: online
wandb_name: 5f82e1f9-da65-46bd-8980-ad940e82e5da
wandb_project: Gradients-On-Two
wandb_run: your_name
wandb_runid: 5f82e1f9-da65-46bd-8980-ad940e82e5da
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null
5f82e1f9-da65-46bd-8980-ad940e82e5da
This model is a fine-tuned version of fxmarty/really-tiny-falcon-testing on the None dataset. It achieves the following results on the evaluation set:
- Loss: 10.9336
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 100
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0011 | 1 | 11.0954 |
44.3444 | 0.0102 | 9 | 11.0740 |
44.1568 | 0.0203 | 18 | 11.0313 |
44.0424 | 0.0305 | 27 | 10.9990 |
43.9742 | 0.0406 | 36 | 10.9763 |
43.8749 | 0.0508 | 45 | 10.9577 |
43.795 | 0.0610 | 54 | 10.9469 |
43.8452 | 0.0711 | 63 | 10.9395 |
43.827 | 0.0813 | 72 | 10.9363 |
43.7551 | 0.0914 | 81 | 10.9349 |
43.7536 | 0.1016 | 90 | 10.9338 |
43.7583 | 0.1118 | 99 | 10.9336 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 44
Model tree for ardaspear/5f82e1f9-da65-46bd-8980-ad940e82e5da
Base model
fxmarty/really-tiny-falcon-testing