Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: Qwen/Qwen2.5-Coder-7B-Instruct
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 2fd0d0574a856db9_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/2fd0d0574a856db9_train_data.json
  type:
    field_instruction: caption
    field_output: states_of_matter
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: true
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: ardaspear/5807bbc0-18e4-48a5-aa6e-ba928564ad68
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 128
lora_dropout: 0.1
lora_fan_in_fan_out: true
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_memory:
  0: 72GB
max_steps: 100
micro_batch_size: 4
mlflow_experiment_name: /tmp/2fd0d0574a856db9_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: false
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: leixa-personal
wandb_mode: online
wandb_name: 5807bbc0-18e4-48a5-aa6e-ba928564ad68
wandb_project: Gradients-On-Two
wandb_run: your_name
wandb_runid: 5807bbc0-18e4-48a5-aa6e-ba928564ad68
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null

5807bbc0-18e4-48a5-aa6e-ba928564ad68

This model is a fine-tuned version of Qwen/Qwen2.5-Coder-7B-Instruct on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0012

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 100

Training results

Training Loss Epoch Step Validation Loss
No log 0.0038 1 10.3854
5.2104 0.0338 9 1.9947
0.3104 0.0675 18 0.1860
0.1533 0.1013 27 0.1180
0.0679 0.1351 36 0.0529
0.0276 0.1689 45 0.0394
0.0028 0.2026 54 0.0202
0.021 0.2364 63 0.0058
0.0012 0.2702 72 0.0040
0.0024 0.3039 81 0.0015
0.0006 0.3377 90 0.0012
0.0003 0.3715 99 0.0012

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
24
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for ardaspear/5807bbc0-18e4-48a5-aa6e-ba928564ad68

Base model

Qwen/Qwen2.5-7B
Adapter
(118)
this model