See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: NousResearch/Nous-Capybara-7B-V1.9
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 4b895dee4142e07b_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/4b895dee4142e07b_train_data.json
type:
field_instruction: query
field_output: product_title
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: ardaspear/2b8ceb77-1b80-42a9-a679-de1a90d85de1
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 5.0e-05
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_steps: 400
micro_batch_size: 8
mlflow_experiment_name: /tmp/4b895dee4142e07b_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: leixa-personal
wandb_mode: online
wandb_name: e0e58ccc-2e26-410b-829d-1fb4dfe74c98
wandb_project: Gradients-On-Five
wandb_run: your_name
wandb_runid: e0e58ccc-2e26-410b-829d-1fb4dfe74c98
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null
2b8ceb77-1b80-42a9-a679-de1a90d85de1
This model is a fine-tuned version of NousResearch/Nous-Capybara-7B-V1.9 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.2355
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 400
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0001 | 1 | 3.1102 |
9.2229 | 0.0019 | 34 | 2.3379 |
8.9903 | 0.0037 | 68 | 2.3097 |
9.3251 | 0.0056 | 102 | 2.2916 |
9.1825 | 0.0074 | 136 | 2.2765 |
8.8806 | 0.0093 | 170 | 2.2636 |
9.3776 | 0.0112 | 204 | 2.2556 |
8.8413 | 0.0130 | 238 | 2.2486 |
9.0626 | 0.0149 | 272 | 2.2435 |
8.962 | 0.0167 | 306 | 2.2392 |
8.6835 | 0.0186 | 340 | 2.2365 |
9.215 | 0.0205 | 374 | 2.2355 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 4
Model tree for ardaspear/2b8ceb77-1b80-42a9-a679-de1a90d85de1
Base model
NousResearch/Nous-Capybara-7B-V1.9