File size: 12,181 Bytes
022b215
 
 
 
 
69bafc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
022b215
2556157
 
 
 
 
022b215
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3fe368e
022b215
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10de856
 
 
 
1e41e74
10de856
 
 
022b215
3dd0564
f74f9e9
10de856
 
3dd0564
f74f9e9
94a5930
ddced7f
 
 
 
 
022b215
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b7ffc2
022b215
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7597b4d
8b7ffc2
7597b4d
022b215
ddced7f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
022b215
 
7597b4d
022b215
 
 
7597b4d
8b7ffc2
 
1e41e74
69bafc5
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
---
language:
- en
- de
- ar
license: apache-2.0
model-index:
- name: Arcee-Spark
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: HuggingFaceH4/ifeval
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 56.21
      name: strict accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=arcee-ai/Arcee-Spark
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: BBH
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 37.14
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=arcee-ai/Arcee-Spark
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: hendrycks/competition_math
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 12.31
      name: exact match
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=arcee-ai/Arcee-Spark
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 7.61
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=arcee-ai/Arcee-Spark
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 8.6
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=arcee-ai/Arcee-Spark
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 31.36
      name: accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=arcee-ai/Arcee-Spark
      name: Open LLM Leaderboard
---

<div align="center">
  <img src="https://i.ibb.co/80ssNWS/o-Vdk-Qx-ARNmzr-Pi1h-Efj-SA.webp" alt="Arcee Spark" style="border-radius: 10px; box-shadow: 0 4px 8px 0 rgba(0, 0, 0, 0.2), 0 6px 20px 0 rgba(0, 0, 0, 0.19); max-width: 100%; height: auto;">
</div>

# Arcee Spark

Arcee Spark is a powerful 7B parameter language model that punches well above its weight class. Initialized from Qwen2, this model underwent a sophisticated training process:

1. Fine-tuned on 1.8 million samples
2. Merged with Qwen2-7B-Instruct using Arcee's mergekit
3. Further refined using Direct Preference Optimization (DPO)

This meticulous process results in exceptional performance, with Arcee Spark achieving the highest score on MT-Bench for models of its size, outperforming even GPT-3.5 on many tasks.

## Key Features

- 7B parameters
- State-of-the-art performance for its size
- Initialized from Qwen2
- Advanced training process including fine-tuning, merging, and DPO
- Highest MT-Bench score in the 7B class
- Outperforms GPT-3.5 on many tasks
- Has a context length of 128k tokens, making it ideal for tasks requiring many conversation turns or working with large amounts of text.

## Business Use Cases

Arcee Spark offers a compelling solution for businesses looking to leverage advanced AI capabilities without the hefty computational requirements of larger models. Its unique combination of small size and high performance makes it ideal for:

1. **Real-time applications**: Deploy Arcee Spark for chatbots, customer service automation, and interactive systems where low latency is crucial.

2. **Edge computing**: Run sophisticated AI tasks on edge devices or in resource-constrained environments.

3. **Cost-effective scaling**: Implement advanced language AI across your organization without breaking the bank on infrastructure or API costs.

4. **Rapid prototyping**: Quickly develop and iterate on AI-powered features and products.

5. **On-premise deployment**: Easily host Arcee Spark on local infrastructure for enhanced data privacy and security.

## Performance and Efficiency

Arcee Spark demonstrates that bigger isn't always better in the world of language models. By leveraging advanced training techniques and architectural optimizations, it delivers:

- **Speed**: Blazing fast inference times, often 10-100x faster than larger models.
- **Efficiency**: Significantly lower computational requirements, reducing both costs and environmental impact.
- **Flexibility**: Easy to fine-tune or adapt for specific domains or tasks.

Despite its compact size, Arcee Spark offers deep reasoning capabilities, making it suitable for a wide range of complex tasks including:

- Advanced text generation
- Detailed question answering
- Nuanced sentiment analysis
- Complex problem-solving
- Code generation and analysis


## Model Availability

- **Quants**: [Arcee Spark GGUF](https://huggingface.co/arcee-ai/Arcee-Spark-GGUF)
- **FP32**: For those looking to squeeze every bit of performance out of the model, we offer an [FP32 version](https://huggingface.co/arcee-ai/Arcee-Spark-FP32) that scores slightly higher on all benchmarks.



## Benchmarks and Evaluations
<div style="display: flex; justify-content: center; margin: 20px 0;">
    <img src="https://i.ibb.co/dQRtXR7/Screenshot-2024-06-23-at-11-01-59-PM.png" alt="Benchmark Results" style="border-radius: 10px; max-width: 90%; height: auto; box-shadow: 0 4px 8px 0 rgba(0, 0, 0, 0.2), 0 6px 20px 0 rgba(0, 0, 0, 0.19);">
</div>

<div style="display: flex; justify-content: center; margin: 20px 0;">
    <img src="https://i.ibb.co/BLX8GmZ/Screenshot-2024-06-23-at-10-43-50-PM.png" alt="Additional Benchmark Results" style="border-radius: 10px; max-width: 90%; height: auto; box-shadow: 0 4px 8px 0 rgba(0, 0, 0, 0.2), 0 6px 20px 0 rgba(0, 0, 0, 0.19);">
</div>

<div style="display: flex; justify-content: center; margin: 20px 0;">
    <img src="https://i.postimg.cc/Vs7v0Vbn/Screenshot-2024-06-24-at-1-10-58-AM.png" alt="Bigbenchhard Results" style="border-radius: 10px; max-width: 90%; height: auto; box-shadow: 0 4px 8px 0 rgba(0, 0, 0, 0.2), 0 6px 20px 0 rgba(0, 0, 0, 0.19);">
</div>

### MT-Bench

```markdown
########## First turn ##########
                     score
model       turn          
arcee-spark 1     8.777778
########## Second turn ##########
                     score
model       turn          
arcee-spark 2     8.164634
########## Average ##########
                score
model                
arcee-spark  8.469325
```

### EQ-Bench
EQ-Bench: 71.4

### TruthfulQA

| Task |Version|Metric|Value |   |Stderr|
|-------------|------:|------|-----:|---|-----:|
|truthfulqa_mc|  1|mc1   |0.4382|±  |0.0174|
|         |   |mc2   |0.6150|±  |0.0155|

### AGI-Eval

|         Task         |Version| Metric |Value |   |Stderr|
|------------------------------|------:|--------|-----:|---|-----:|
|agieval_aqua_rat          |  0|acc |0.3937|±  |0.0307|
|                          |   |acc_norm|0.3937|±  |0.0307|
|agieval_logiqa_en         |  0|acc |0.4731|±  |0.0196|
|                          |   |acc_norm|0.4854|±  |0.0196|
|agieval_lsat_ar           |  0|acc |0.2783|±  |0.0296|
|                          |   |acc_norm|0.3000|±  |0.0303|
|agieval_lsat_lr           |  0|acc |0.5549|±  |0.0220|
|                          |   |acc_norm|0.5451|±  |0.0221|
|agieval_lsat_rc           |  0|acc |0.6022|±  |0.0299|
|                          |   |acc_norm|0.6208|±  |0.0296|
|agieval_sat_en            |  0|acc |0.8155|±  |0.0271|
|                          |   |acc_norm|0.8107|±  |0.0274|
|agieval_sat_en_without_passage|  0|acc |0.4806|±  |0.0349|
|                          |   |acc_norm|0.4612|±  |0.0348|
|agieval_sat_math          |  0|acc |0.4909|±  |0.0338|
|                          |   |acc_norm|0.4545|±  |0.0336|

AGI-eval average: 51.11

### GPT4All Evaluation

|    Task     |Version| Metric |Value |   |Stderr|
|-------------|------:|--------|-----:|---|-----:|
|arc_challenge|      0|acc     |0.5333|±  |0.0146|
|             |       |acc_norm|0.5640|±  |0.0145|
|arc_easy     |      0|acc     |0.8131|±  |0.0080|
|             |       |acc_norm|0.7668|±  |0.0087|
|boolq        |      1|acc     |0.8471|±  |0.0063|
|hellaswag    |      0|acc     |0.6206|±  |0.0048|
|             |       |acc_norm|0.8118|±  |0.0039|
|openbookqa   |      0|acc     |0.3560|±  |0.0214|
|             |       |acc_norm|0.4600|±  |0.0223|
|piqa         |      0|acc     |0.7987|±  |0.0094|
|             |       |acc_norm|0.8030|±  |0.0093|
|winogrande   |      0|acc     |0.7690|±  |0.0130|

Gpt4al Average: 69.37

## Big Bench Hard

|                      Task                      |Version|       Metric        |Value |   |Stderr|
|------------------------------------------------|------:|---------------------|-----:|---|-----:|
|bigbench_causal_judgement                       |      0|multiple_choice_grade|0.6053|±  |0.0356|
|bigbench_date_understanding                     |      0|multiple_choice_grade|0.6450|±  |0.0249|
|bigbench_disambiguation_qa                      |      0|multiple_choice_grade|0.5233|±  |0.0312|
|bigbench_geometric_shapes                       |      0|multiple_choice_grade|0.2006|±  |0.0212|
|                                                |       |exact_str_match      |0.0000|±  |0.0000|
|bigbench_logical_deduction_five_objects         |      0|multiple_choice_grade|0.2840|±  |0.0202|
|bigbench_logical_deduction_seven_objects        |      0|multiple_choice_grade|0.2429|±  |0.0162|
|bigbench_logical_deduction_three_objects        |      0|multiple_choice_grade|0.4367|±  |0.0287|
|bigbench_movie_recommendation                   |      0|multiple_choice_grade|0.4720|±  |0.0223|
|bigbench_navigate                               |      0|multiple_choice_grade|0.4980|±  |0.0158|
|bigbench_reasoning_about_colored_objects        |      0|multiple_choice_grade|0.5600|±  |0.0111|
|bigbench_ruin_names                             |      0|multiple_choice_grade|0.4375|±  |0.0235|
|bigbench_salient_translation_error_detection    |      0|multiple_choice_grade|0.2685|±  |0.0140|
|bigbench_snarks                                 |      0|multiple_choice_grade|0.7348|±  |0.0329|
|bigbench_sports_understanding                   |      0|multiple_choice_grade|0.6978|±  |0.0146|
|bigbench_temporal_sequences                     |      0|multiple_choice_grade|0.4060|±  |0.0155|
|bigbench_tracking_shuffled_objects_five_objects |      0|multiple_choice_grade|0.2072|±  |0.0115|
|bigbench_tracking_shuffled_objects_seven_objects|      0|multiple_choice_grade|0.1406|±  |0.0083|
|bigbench_tracking_shuffled_objects_three_objects|      0|multiple_choice_grade|0.4367|±  |0.0287|

Big Bench average: 45.78

## License

Arcee Spark is released under the Apache 2.0 license. 

## Acknowledgments

- The Qwen2 team for their foundational work
- The open-source AI community for their invaluable tools and datasets
- Our dedicated team of researchers and engineers who push the boundaries of what's possible with compact language models


# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_arcee-ai__Arcee-Spark)

|      Metric       |Value|
|-------------------|----:|
|Avg.               |25.54|
|IFEval (0-Shot)    |56.21|
|BBH (3-Shot)       |37.14|
|MATH Lvl 5 (4-Shot)|12.31|
|GPQA (0-shot)      | 7.61|
|MuSR (0-shot)      | 8.60|
|MMLU-PRO (5-shot)  |31.36|