Crystalcareai commited on
Commit
022b215
1 Parent(s): 1215493

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +136 -0
README.md ADDED
@@ -0,0 +1,136 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ language:
4
+ - en
5
+ - de
6
+ - ar
7
+ ---
8
+ # Arcee Spark
9
+
10
+ Arcee Spark is a powerful 7B parameter language model that punches well above its weight class. Initialized from Qwen2, this model underwent a sophisticated training process:
11
+
12
+ 1. Fine-tuned on 1.8 million samples
13
+ 2. Merged with Qwen2-7B-Instruct using Arcee's mergekit
14
+ 3. Further refined using Direct Preference Optimization (DPO)
15
+
16
+ This meticulous process results in exceptional performance, with Arcee Spark achieving the highest score on MT-Bench for models of its size, outperforming even GPT-3.5 on many tasks.
17
+
18
+ ## Key Features
19
+
20
+ - 7B parameters
21
+ - State-of-the-art performance for its size
22
+ - Initialized from Qwen2
23
+ - Advanced training process including fine-tuning, merging, and DPO
24
+ - Highest MT-Bench score in the 7B class
25
+ - Outperforms GPT-3.5 on many tasks
26
+
27
+ ## Business Use Cases
28
+
29
+ Arcee Spark offers a compelling solution for businesses looking to leverage advanced AI capabilities without the hefty computational requirements of larger models. Its unique combination of small size and high performance makes it ideal for:
30
+
31
+ 1. **Real-time applications**: Deploy Arcee Spark for chatbots, customer service automation, and interactive systems where low latency is crucial.
32
+
33
+ 2. **Edge computing**: Run sophisticated AI tasks on edge devices or in resource-constrained environments.
34
+
35
+ 3. **Cost-effective scaling**: Implement advanced language AI across your organization without breaking the bank on infrastructure or API costs.
36
+
37
+ 4. **Rapid prototyping**: Quickly develop and iterate on AI-powered features and products.
38
+
39
+ 5. **On-premise deployment**: Easily host Arcee Spark on local infrastructure for enhanced data privacy and security.
40
+
41
+ ## Performance and Efficiency
42
+
43
+ Arcee Spark demonstrates that bigger isn't always better in the world of language models. By leveraging advanced training techniques and architectural optimizations, it delivers:
44
+
45
+ - **Speed**: Blazing fast inference times, often 10-100x faster than larger models.
46
+ - **Efficiency**: Significantly lower computational requirements, reducing both costs and environmental impact.
47
+ - **Flexibility**: Easy to fine-tune or adapt for specific domains or tasks.
48
+
49
+ Despite its compact size, Arcee Spark offers deep reasoning capabilities, making it suitable for a wide range of complex tasks including:
50
+
51
+ - Advanced text generation
52
+ - Detailed question answering
53
+ - Nuanced sentiment analysis
54
+ - Complex problem-solving
55
+ - Code generation and analysis
56
+
57
+ ## Benchmarks and Evaluations
58
+
59
+ ### MT-Bench
60
+
61
+ ```markdown
62
+ ########## First turn ##########
63
+ score
64
+ model turn
65
+ arcee-spark 1 8.777778
66
+ ########## Second turn ##########
67
+ score
68
+ model turn
69
+ arcee-spark 2 8.164634
70
+ ########## Average ##########
71
+ score
72
+ model
73
+ arcee-spark 8.469325
74
+ ```
75
+
76
+ ### EQ-Bench
77
+ EQ-Bench: 71.4
78
+
79
+ ### TruthfulQA
80
+
81
+ | Task |Version|Metric|Value | |Stderr|
82
+ |-------------|------:|------|-----:|---|-----:|
83
+ |truthfulqa_mc| 1|mc1 |0.4382|± |0.0174|
84
+ | | |mc2 |0.6150|± |0.0155|
85
+
86
+ ### AGI-Eval
87
+
88
+ | Task |Version| Metric |Value | |Stderr|
89
+ |------------------------------|------:|--------|-----:|---|-----:|
90
+ |agieval_aqua_rat | 0|acc |0.3937|± |0.0307|
91
+ | | |acc_norm|0.3937|± |0.0307|
92
+ |agieval_logiqa_en | 0|acc |0.4731|± |0.0196|
93
+ | | |acc_norm|0.4854|± |0.0196|
94
+ |agieval_lsat_ar | 0|acc |0.2783|± |0.0296|
95
+ | | |acc_norm|0.3000|± |0.0303|
96
+ |agieval_lsat_lr | 0|acc |0.5549|± |0.0220|
97
+ | | |acc_norm|0.5451|± |0.0221|
98
+ |agieval_lsat_rc | 0|acc |0.6022|± |0.0299|
99
+ | | |acc_norm|0.6208|± |0.0296|
100
+ |agieval_sat_en | 0|acc |0.8155|± |0.0271|
101
+ | | |acc_norm|0.8107|± |0.0274|
102
+ |agieval_sat_en_without_passage| 0|acc |0.4806|± |0.0349|
103
+ | | |acc_norm|0.4612|± |0.0348|
104
+ |agieval_sat_math | 0|acc |0.4909|± |0.0338|
105
+ | | |acc_norm|0.4545|± |0.0336|
106
+
107
+ AGI-eval average: 51.11
108
+
109
+ ### GPT4All Evaluation
110
+
111
+ | Task |Version| Metric |Value | |Stderr|
112
+ |-------------|------:|--------|-----:|---|-----:|
113
+ |arc_challenge| 0|acc |0.5333|± |0.0146|
114
+ | | |acc_norm|0.5640|± |0.0145|
115
+ |arc_easy | 0|acc |0.8131|± |0.0080|
116
+ | | |acc_norm|0.7668|± |0.0087|
117
+ |boolq | 1|acc |0.8471|± |0.0063|
118
+ |hellaswag | 0|acc |0.6206|± |0.0048|
119
+ | | |acc_norm|0.8118|± |0.0039|
120
+ |openbookqa | 0|acc |0.3560|± |0.0214|
121
+ | | |acc_norm|0.4600|± |0.0223|
122
+ |piqa | 0|acc |0.7987|± |0.0094|
123
+ | | |acc_norm|0.8030|± |0.0093|
124
+ |winogrande | 0|acc |0.6938|± |0.0130|
125
+
126
+ Gpt4al Average: 67.07
127
+
128
+ ## License
129
+
130
+ Arcee Spark is released under the Apache 2.0 license. See the [LICENSE](LICENSE) file for details.
131
+
132
+ ## Acknowledgments
133
+
134
+ The Qwen2 team for their foundational work
135
+ The open-source AI community for their invaluable tools and datasets
136
+ Our dedicated team of researchers and engineers who push the boundaries of what's possible with compact language models