summarization-lora-4
This model is a fine-tuned version of LazarusNLP/IndoNanoT5-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.4618
- Rouge1: 0.414
- Rouge2: 0.0
- Rougel: 0.4145
- Rougelsum: 0.4144
- Gen Len: 1.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 16
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
---|---|---|---|---|---|---|---|---|
0.7784 | 1.0 | 892 | 0.5092 | 0.716 | 0.0 | 0.7135 | 0.7135 | 1.0 |
0.597 | 2.0 | 1784 | 0.4861 | 0.7099 | 0.0 | 0.7098 | 0.7065 | 1.0 |
0.5538 | 3.0 | 2676 | 0.4700 | 0.7231 | 0.0 | 0.7238 | 0.7212 | 1.0 |
0.5245 | 4.0 | 3568 | 0.4649 | 0.7304 | 0.0 | 0.7271 | 0.7266 | 1.0 |
0.5037 | 5.0 | 4460 | 0.4618 | 0.7261 | 0.0 | 0.7257 | 0.7223 | 1.0 |
Framework versions
- Transformers 4.40.2
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
Model tree for apwic/summarization-lora-4
Base model
LazarusNLP/IndoNanoT5-base