Edit model card

sentiment-base-3

This model is a fine-tuned version of indolem/indobert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8030
  • Accuracy: 0.9023
  • Precision: 0.8875
  • Recall: 0.8733
  • F1: 0.8799

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 30
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20.0

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.4092 1.0 122 0.3457 0.8521 0.8930 0.7554 0.7892
0.2282 2.0 244 0.2584 0.8922 0.8749 0.8612 0.8676
0.138 3.0 366 0.4417 0.8797 0.8825 0.8199 0.8430
0.0837 4.0 488 0.4037 0.9023 0.8893 0.8708 0.8793
0.0426 5.0 610 0.5462 0.9048 0.8806 0.8951 0.8873
0.0502 6.0 732 0.5626 0.8897 0.8618 0.8820 0.8707
0.0242 7.0 854 0.6241 0.9073 0.8977 0.8744 0.8849
0.0217 8.0 976 0.7096 0.8872 0.8579 0.8852 0.8692
0.0229 9.0 1098 0.6115 0.9123 0.8910 0.9004 0.8955
0.0109 10.0 1220 0.7575 0.8972 0.8796 0.8698 0.8745
0.0068 11.0 1342 0.7537 0.9073 0.8938 0.8794 0.8861
0.0131 12.0 1464 0.7247 0.8972 0.8732 0.8823 0.8776
0.0101 13.0 1586 0.7928 0.8972 0.8754 0.8773 0.8764
0.0061 14.0 1708 0.7849 0.9073 0.8875 0.8894 0.8884
0.0135 15.0 1830 0.7816 0.8972 0.8830 0.8648 0.8731
0.0081 16.0 1952 0.7727 0.8972 0.8767 0.8748 0.8757
0.0027 17.0 2074 0.8128 0.8972 0.8754 0.8773 0.8764
0.0041 18.0 2196 0.8081 0.9023 0.8828 0.8808 0.8818
0.0018 19.0 2318 0.8039 0.9023 0.8893 0.8708 0.8793
0.0025 20.0 2440 0.8030 0.9023 0.8875 0.8733 0.8799

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.15.2
Downloads last month
12
Safetensors
Model size
112M params
Tensor type
F32
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for apwic/sentiment-base-3

Finetuned
(366)
this model