Edit model card

nerui-pt-pl20-4

This model is a fine-tuned version of indolem/indobert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0559
  • Location Precision: 0.9259
  • Location Recall: 0.9709
  • Location F1: 0.9479
  • Location Number: 103
  • Organization Precision: 0.9401
  • Organization Recall: 0.9181
  • Organization F1: 0.9290
  • Organization Number: 171
  • Person Precision: 0.9695
  • Person Recall: 0.9695
  • Person F1: 0.9695
  • Person Number: 131
  • Overall Precision: 0.9458
  • Overall Recall: 0.9481
  • Overall F1: 0.9470
  • Overall Accuracy: 0.9887

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100.0

Training results

Training Loss Epoch Step Validation Loss Location Precision Location Recall Location F1 Location Number Organization Precision Organization Recall Organization F1 Organization Number Person Precision Person Recall Person F1 Person Number Overall Precision Overall Recall Overall F1 Overall Accuracy
0.86 1.0 96 0.4040 0.0 0.0 0.0 103 0.256 0.1871 0.2162 171 0.3254 0.3130 0.3191 131 0.2908 0.1802 0.2226 0.8619
0.3784 2.0 192 0.2618 0.32 0.3107 0.3153 103 0.4785 0.4561 0.4671 171 0.4020 0.6260 0.4896 131 0.4111 0.4741 0.4404 0.9100
0.2322 3.0 288 0.1241 0.7475 0.7184 0.7327 103 0.7 0.7778 0.7368 171 0.9143 0.9771 0.9446 131 0.7809 0.8272 0.8034 0.9633
0.146 4.0 384 0.0837 0.8148 0.8544 0.8341 103 0.7853 0.8772 0.8287 171 0.9624 0.9771 0.9697 131 0.8472 0.9037 0.8746 0.9749
0.1174 5.0 480 0.0715 0.9029 0.9029 0.9029 103 0.8571 0.8772 0.8671 171 0.9481 0.9771 0.9624 131 0.8983 0.9160 0.9071 0.9796
0.1001 6.0 576 0.0610 0.8509 0.9417 0.8940 103 0.8812 0.8246 0.8520 171 0.9699 0.9847 0.9773 131 0.9017 0.9062 0.9039 0.9815
0.0895 7.0 672 0.0543 0.9368 0.8641 0.8990 103 0.8261 0.8889 0.8563 171 0.9773 0.9847 0.9810 131 0.9002 0.9136 0.9069 0.9837
0.0796 8.0 768 0.0474 0.8932 0.8932 0.8932 103 0.8864 0.9123 0.8991 171 0.9771 0.9771 0.9771 131 0.9171 0.9284 0.9227 0.9851
0.0721 9.0 864 0.0444 0.8673 0.9515 0.9074 103 0.9321 0.8830 0.9069 171 0.9771 0.9771 0.9771 131 0.9286 0.9309 0.9297 0.9870
0.0652 10.0 960 0.0419 0.9074 0.9515 0.9289 103 0.9195 0.9357 0.9275 171 0.9771 0.9771 0.9771 131 0.9346 0.9531 0.9438 0.9884
0.0626 11.0 1056 0.0386 0.9340 0.9612 0.9474 103 0.8889 0.9357 0.9117 171 0.9846 0.9771 0.9808 131 0.9303 0.9556 0.9428 0.9881
0.0565 12.0 1152 0.0386 0.9320 0.9320 0.9320 103 0.8914 0.9123 0.9017 171 0.9846 0.9771 0.9808 131 0.9314 0.9383 0.9348 0.9876
0.0561 13.0 1248 0.0392 0.9252 0.9612 0.9429 103 0.9217 0.8947 0.9080 171 0.9695 0.9695 0.9695 131 0.9381 0.9358 0.9370 0.9865
0.0537 14.0 1344 0.0381 0.9259 0.9709 0.9479 103 0.9157 0.8889 0.9021 171 0.9846 0.9771 0.9808 131 0.9406 0.9383 0.9394 0.9854
0.0522 15.0 1440 0.0331 0.9515 0.9515 0.9515 103 0.8966 0.9123 0.9043 171 0.9695 0.9695 0.9695 131 0.9338 0.9407 0.9373 0.9892
0.0466 16.0 1536 0.0356 0.9423 0.9515 0.9469 103 0.9045 0.9415 0.9226 171 0.9692 0.9618 0.9655 131 0.9345 0.9506 0.9425 0.9898
0.0451 17.0 1632 0.0349 0.9252 0.9612 0.9429 103 0.9 0.8947 0.8974 171 0.9846 0.9771 0.9808 131 0.9337 0.9383 0.9360 0.9887
0.0415 18.0 1728 0.0356 0.9074 0.9515 0.9289 103 0.9157 0.8889 0.9021 171 0.9846 0.9771 0.9808 131 0.9356 0.9333 0.9345 0.9876
0.0408 19.0 1824 0.0325 0.9167 0.9612 0.9384 103 0.9176 0.9123 0.9150 171 0.9846 0.9771 0.9808 131 0.9387 0.9457 0.9422 0.9898
0.0392 20.0 1920 0.0368 0.9074 0.9515 0.9289 103 0.9290 0.9181 0.9235 171 0.9846 0.9771 0.9808 131 0.9410 0.9457 0.9433 0.9887
0.037 21.0 2016 0.0467 0.8929 0.9709 0.9302 103 0.9182 0.8538 0.8848 171 0.9695 0.9695 0.9695 131 0.9279 0.9210 0.9244 0.9851
0.0365 22.0 2112 0.0357 0.9083 0.9612 0.9340 103 0.9112 0.9006 0.9059 171 0.9771 0.9771 0.9771 131 0.9315 0.9407 0.9361 0.9876
0.0366 23.0 2208 0.0416 0.8909 0.9515 0.9202 103 0.9036 0.8772 0.8902 171 0.9695 0.9695 0.9695 131 0.9214 0.9259 0.9236 0.9859
0.0355 24.0 2304 0.0415 0.8938 0.9806 0.9352 103 0.9136 0.8655 0.8889 171 0.9692 0.9618 0.9655 131 0.9259 0.9259 0.9259 0.9859
0.0328 25.0 2400 0.0448 0.8783 0.9806 0.9266 103 0.9241 0.8538 0.8875 171 0.9618 0.9618 0.9618 131 0.9233 0.9210 0.9221 0.9843
0.0328 26.0 2496 0.0376 0.9423 0.9515 0.9469 103 0.9181 0.9181 0.9181 171 0.9545 0.9618 0.9582 131 0.9361 0.9407 0.9384 0.9876
0.0315 27.0 2592 0.0348 0.9340 0.9612 0.9474 103 0.9 0.8947 0.8974 171 0.9769 0.9695 0.9732 131 0.9335 0.9358 0.9346 0.9890
0.0292 28.0 2688 0.0356 0.9519 0.9612 0.9565 103 0.9023 0.9181 0.9101 171 0.9692 0.9618 0.9655 131 0.9363 0.9432 0.9397 0.9890
0.0281 29.0 2784 0.0371 0.9174 0.9709 0.9434 103 0.9172 0.9064 0.9118 171 0.9845 0.9695 0.9769 131 0.9386 0.9432 0.9409 0.9881
0.0283 30.0 2880 0.0415 0.9018 0.9806 0.9395 103 0.9235 0.9181 0.9208 171 0.9695 0.9695 0.9695 131 0.9322 0.9506 0.9413 0.9884
0.0264 31.0 2976 0.0383 0.9091 0.9709 0.9390 103 0.9112 0.9006 0.9059 171 0.9844 0.9618 0.9730 131 0.9337 0.9383 0.9360 0.9878
0.0254 32.0 3072 0.0406 0.9167 0.9612 0.9384 103 0.9176 0.9123 0.9150 171 0.9690 0.9542 0.9615 131 0.9337 0.9383 0.9360 0.9873
0.0269 33.0 3168 0.0383 0.9352 0.9806 0.9573 103 0.9401 0.9181 0.9290 171 0.9692 0.9618 0.9655 131 0.9481 0.9481 0.9481 0.9887
0.027 34.0 3264 0.0369 0.9266 0.9806 0.9528 103 0.9123 0.9123 0.9123 171 0.9845 0.9695 0.9769 131 0.9389 0.9481 0.9435 0.9881
0.0284 35.0 3360 0.0364 0.9259 0.9709 0.9479 103 0.9345 0.9181 0.9263 171 0.9621 0.9695 0.9658 131 0.9412 0.9481 0.9446 0.9901
0.0214 36.0 3456 0.0350 0.9182 0.9806 0.9484 103 0.9349 0.9240 0.9294 171 0.9846 0.9771 0.9808 131 0.9462 0.9556 0.9509 0.9903
0.0222 37.0 3552 0.0395 0.9333 0.9515 0.9423 103 0.9123 0.9123 0.9123 171 0.9692 0.9618 0.9655 131 0.9360 0.9383 0.9371 0.9892
0.0232 38.0 3648 0.0444 0.8860 0.9806 0.9309 103 0.9383 0.8889 0.9129 171 0.9771 0.9771 0.9771 131 0.9361 0.9407 0.9384 0.9876
0.0221 39.0 3744 0.0411 0.9182 0.9806 0.9484 103 0.9212 0.8889 0.9048 171 0.9771 0.9771 0.9771 131 0.9384 0.9407 0.9396 0.9890
0.0225 40.0 3840 0.0403 0.9327 0.9417 0.9372 103 0.8960 0.9064 0.9012 171 0.9697 0.9771 0.9734 131 0.9291 0.9383 0.9337 0.9878
0.0233 41.0 3936 0.0363 0.9252 0.9612 0.9429 103 0.9290 0.9181 0.9235 171 0.9771 0.9771 0.9771 131 0.9435 0.9481 0.9458 0.9895
0.0226 42.0 4032 0.0391 0.9333 0.9515 0.9423 103 0.9341 0.9123 0.9231 171 0.9771 0.9771 0.9771 131 0.9479 0.9432 0.9455 0.9901
0.0213 43.0 4128 0.0401 0.9167 0.9612 0.9384 103 0.9217 0.8947 0.9080 171 0.9771 0.9771 0.9771 131 0.9383 0.9383 0.9383 0.9890
0.0197 44.0 4224 0.0417 0.9091 0.9709 0.9390 103 0.9222 0.9006 0.9112 171 0.9771 0.9771 0.9771 131 0.9363 0.9432 0.9397 0.9895
0.0188 45.0 4320 0.0393 0.9174 0.9709 0.9434 103 0.9231 0.9123 0.9176 171 0.9692 0.9618 0.9655 131 0.9363 0.9432 0.9397 0.9890
0.0194 46.0 4416 0.0440 0.8938 0.9806 0.9352 103 0.9096 0.8830 0.8961 171 0.9695 0.9695 0.9695 131 0.9244 0.9358 0.9301 0.9878
0.0185 47.0 4512 0.0407 0.9340 0.9612 0.9474 103 0.9118 0.9064 0.9091 171 0.9695 0.9695 0.9695 131 0.9361 0.9407 0.9384 0.9884
0.018 48.0 4608 0.0461 0.9009 0.9709 0.9346 103 0.9152 0.8830 0.8988 171 0.9771 0.9771 0.9771 131 0.9312 0.9358 0.9335 0.9884
0.0172 49.0 4704 0.0439 0.9252 0.9612 0.9429 103 0.9277 0.9006 0.9139 171 0.9771 0.9771 0.9771 131 0.9431 0.9407 0.9419 0.9890
0.0163 50.0 4800 0.0461 0.8929 0.9709 0.9302 103 0.9152 0.8830 0.8988 171 0.9697 0.9771 0.9734 131 0.9267 0.9358 0.9312 0.9865
0.0174 51.0 4896 0.0474 0.9091 0.9709 0.9390 103 0.9146 0.8772 0.8955 171 0.9771 0.9771 0.9771 131 0.9333 0.9333 0.9333 0.9878
0.0163 52.0 4992 0.0474 0.9259 0.9709 0.9479 103 0.9509 0.9064 0.9281 171 0.9771 0.9771 0.9771 131 0.9527 0.9457 0.9492 0.9895
0.0169 53.0 5088 0.0492 0.9167 0.9612 0.9384 103 0.9273 0.8947 0.9107 171 0.9621 0.9695 0.9658 131 0.9358 0.9358 0.9358 0.9867
0.0161 54.0 5184 0.0482 0.9252 0.9612 0.9429 103 0.9053 0.8947 0.9000 171 0.9771 0.9771 0.9771 131 0.9337 0.9383 0.9360 0.9884
0.0159 55.0 5280 0.0501 0.9099 0.9806 0.9439 103 0.9281 0.9064 0.9172 171 0.9771 0.9771 0.9771 131 0.9389 0.9481 0.9435 0.9884
0.0162 56.0 5376 0.0463 0.9009 0.9709 0.9346 103 0.9202 0.8772 0.8982 171 0.9771 0.9771 0.9771 131 0.9333 0.9333 0.9333 0.9867
0.014 57.0 5472 0.0471 0.9174 0.9709 0.9434 103 0.9268 0.8889 0.9075 171 0.9771 0.9771 0.9771 131 0.9406 0.9383 0.9394 0.9878
0.0138 58.0 5568 0.0450 0.9259 0.9709 0.9479 103 0.9222 0.9006 0.9112 171 0.9846 0.9771 0.9808 131 0.9432 0.9432 0.9432 0.9892
0.0128 59.0 5664 0.0474 0.9252 0.9612 0.9429 103 0.9333 0.9006 0.9167 171 0.9621 0.9695 0.9658 131 0.9406 0.9383 0.9394 0.9890
0.0152 60.0 5760 0.0434 0.9252 0.9612 0.9429 103 0.9217 0.8947 0.9080 171 0.9771 0.9771 0.9771 131 0.9406 0.9383 0.9394 0.9887
0.0138 61.0 5856 0.0472 0.9238 0.9417 0.9327 103 0.9172 0.9064 0.9118 171 0.9695 0.9695 0.9695 131 0.9358 0.9358 0.9358 0.9878
0.0144 62.0 5952 0.0474 0.9245 0.9515 0.9378 103 0.9172 0.9064 0.9118 171 0.9549 0.9695 0.9621 131 0.9314 0.9383 0.9348 0.9881
0.0125 63.0 6048 0.0482 0.9266 0.9806 0.9528 103 0.9172 0.9064 0.9118 171 0.9771 0.9771 0.9771 131 0.9389 0.9481 0.9435 0.9887
0.0128 64.0 6144 0.0458 0.9245 0.9515 0.9378 103 0.9157 0.8889 0.9021 171 0.9695 0.9695 0.9695 131 0.9355 0.9309 0.9332 0.9887
0.0109 65.0 6240 0.0501 0.9245 0.9515 0.9378 103 0.9172 0.9064 0.9118 171 0.9695 0.9695 0.9695 131 0.9360 0.9383 0.9371 0.9884
0.0138 66.0 6336 0.0488 0.9167 0.9612 0.9384 103 0.9226 0.9064 0.9145 171 0.9771 0.9771 0.9771 131 0.9386 0.9432 0.9409 0.9892
0.011 67.0 6432 0.0495 0.9107 0.9903 0.9488 103 0.9394 0.9064 0.9226 171 0.9771 0.9771 0.9771 131 0.9436 0.9506 0.9471 0.9895
0.0124 68.0 6528 0.0516 0.9182 0.9806 0.9484 103 0.9286 0.9123 0.9204 171 0.9771 0.9771 0.9771 131 0.9413 0.9506 0.9459 0.9892
0.0112 69.0 6624 0.0539 0.9266 0.9806 0.9528 103 0.9162 0.8947 0.9053 171 0.9771 0.9771 0.9771 131 0.9386 0.9432 0.9409 0.9884
0.0116 70.0 6720 0.0527 0.9099 0.9806 0.9439 103 0.9398 0.9123 0.9258 171 0.9771 0.9771 0.9771 131 0.9436 0.9506 0.9471 0.9884
0.0126 71.0 6816 0.0553 0.9245 0.9515 0.9378 103 0.9176 0.9123 0.9150 171 0.9695 0.9695 0.9695 131 0.9361 0.9407 0.9384 0.9890
0.0119 72.0 6912 0.0552 0.9252 0.9612 0.9429 103 0.9281 0.9064 0.9172 171 0.9695 0.9695 0.9695 131 0.9407 0.9407 0.9407 0.9878
0.0117 73.0 7008 0.0521 0.9083 0.9612 0.9340 103 0.9167 0.9006 0.9086 171 0.9695 0.9695 0.9695 131 0.9314 0.9383 0.9348 0.9878
0.0109 74.0 7104 0.0524 0.9252 0.9612 0.9429 103 0.9337 0.9064 0.9199 171 0.9695 0.9695 0.9695 131 0.9431 0.9407 0.9419 0.9895
0.0119 75.0 7200 0.0502 0.9252 0.9612 0.9429 103 0.9290 0.9181 0.9235 171 0.9695 0.9695 0.9695 131 0.9410 0.9457 0.9433 0.9890
0.0108 76.0 7296 0.0494 0.9167 0.9612 0.9384 103 0.9290 0.9181 0.9235 171 0.9695 0.9695 0.9695 131 0.9387 0.9457 0.9422 0.9884
0.0102 77.0 7392 0.0562 0.8850 0.9709 0.9259 103 0.9329 0.8947 0.9134 171 0.9695 0.9695 0.9695 131 0.9314 0.9383 0.9348 0.9867
0.0106 78.0 7488 0.0520 0.9252 0.9612 0.9429 103 0.9226 0.9064 0.9145 171 0.9695 0.9695 0.9695 131 0.9384 0.9407 0.9396 0.9884
0.01 79.0 7584 0.0536 0.9252 0.9612 0.9429 103 0.9157 0.8889 0.9021 171 0.9695 0.9695 0.9695 131 0.9356 0.9333 0.9345 0.9878
0.0106 80.0 7680 0.0518 0.9259 0.9709 0.9479 103 0.9222 0.9006 0.9112 171 0.9771 0.9771 0.9771 131 0.9409 0.9432 0.9420 0.9887
0.0109 81.0 7776 0.0509 0.9252 0.9612 0.9429 103 0.9231 0.9123 0.9176 171 0.9771 0.9771 0.9771 131 0.9410 0.9457 0.9433 0.9890
0.0107 82.0 7872 0.0536 0.9259 0.9709 0.9479 103 0.9286 0.9123 0.9204 171 0.9771 0.9771 0.9771 131 0.9435 0.9481 0.9458 0.9890
0.01 83.0 7968 0.0543 0.9174 0.9709 0.9434 103 0.9329 0.8947 0.9134 171 0.9771 0.9771 0.9771 131 0.9431 0.9407 0.9419 0.9878
0.0095 84.0 8064 0.0519 0.9259 0.9709 0.9479 103 0.9345 0.9181 0.9263 171 0.9771 0.9771 0.9771 131 0.9459 0.9506 0.9483 0.9887
0.0089 85.0 8160 0.0534 0.9259 0.9709 0.9479 103 0.9286 0.9123 0.9204 171 0.9846 0.9771 0.9808 131 0.9458 0.9481 0.9470 0.9890
0.0092 86.0 8256 0.0564 0.9174 0.9709 0.9434 103 0.9268 0.8889 0.9075 171 0.9771 0.9771 0.9771 131 0.9406 0.9383 0.9394 0.9873
0.009 87.0 8352 0.0552 0.9252 0.9612 0.9429 103 0.9281 0.9064 0.9172 171 0.9695 0.9695 0.9695 131 0.9407 0.9407 0.9407 0.9878
0.0091 88.0 8448 0.0558 0.9252 0.9612 0.9429 103 0.9341 0.9123 0.9231 171 0.9695 0.9695 0.9695 131 0.9432 0.9432 0.9432 0.9881
0.0084 89.0 8544 0.0564 0.9259 0.9709 0.9479 103 0.9341 0.9123 0.9231 171 0.9771 0.9771 0.9771 131 0.9458 0.9481 0.9470 0.9887
0.0083 90.0 8640 0.0559 0.9259 0.9709 0.9479 103 0.9341 0.9123 0.9231 171 0.9771 0.9771 0.9771 131 0.9458 0.9481 0.9470 0.9884
0.0091 91.0 8736 0.0571 0.9252 0.9612 0.9429 103 0.9337 0.9064 0.9199 171 0.9695 0.9695 0.9695 131 0.9431 0.9407 0.9419 0.9878
0.0091 92.0 8832 0.0549 0.9252 0.9612 0.9429 103 0.9398 0.9123 0.9258 171 0.9695 0.9695 0.9695 131 0.9455 0.9432 0.9444 0.9878
0.0087 93.0 8928 0.0556 0.9252 0.9612 0.9429 103 0.9341 0.9123 0.9231 171 0.9695 0.9695 0.9695 131 0.9432 0.9432 0.9432 0.9881
0.01 94.0 9024 0.0554 0.9252 0.9612 0.9429 103 0.9341 0.9123 0.9231 171 0.9695 0.9695 0.9695 131 0.9432 0.9432 0.9432 0.9881
0.0084 95.0 9120 0.0553 0.9252 0.9612 0.9429 103 0.9341 0.9123 0.9231 171 0.9695 0.9695 0.9695 131 0.9432 0.9432 0.9432 0.9881
0.0087 96.0 9216 0.0561 0.9259 0.9709 0.9479 103 0.9345 0.9181 0.9263 171 0.9695 0.9695 0.9695 131 0.9435 0.9481 0.9458 0.9884
0.0085 97.0 9312 0.0559 0.9259 0.9709 0.9479 103 0.9401 0.9181 0.9290 171 0.9695 0.9695 0.9695 131 0.9458 0.9481 0.9470 0.9887
0.0096 98.0 9408 0.0556 0.9252 0.9612 0.9429 103 0.9341 0.9123 0.9231 171 0.9695 0.9695 0.9695 131 0.9432 0.9432 0.9432 0.9884
0.0077 99.0 9504 0.0558 0.9252 0.9612 0.9429 103 0.9341 0.9123 0.9231 171 0.9695 0.9695 0.9695 131 0.9432 0.9432 0.9432 0.9884
0.0093 100.0 9600 0.0559 0.9259 0.9709 0.9479 103 0.9401 0.9181 0.9290 171 0.9695 0.9695 0.9695 131 0.9458 0.9481 0.9470 0.9887

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.15.2
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model's library. Check the docs .

Model tree for apwic/nerui-pt-pl20-4

Finetuned
(366)
this model