Update README.md
#2
by
Sansa
- opened
README.md
CHANGED
@@ -16,12 +16,59 @@ The DiffuCoder-7B-Base model is our foundational masked diffusion LLM for code g
|
|
16 |
|
17 |
- Benchmarks: Strong baseline performance on HumanEval, MBPP and BigCodeBench.
|
18 |
|
19 |
-
|
20 |
#### More details and usage examples:
|
21 |
|
22 |
- Paper: [DiffuCoder: Understanding and Improving Masked Diffusion Models for Code Generation](https://arxiv.org/abs/2506.20639)
|
23 |
|
24 |
- GitHub: https://github.com/apple/ml-diffucoder
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
#### Acknowledgement
|
27 |
To power this HuggingFace model release, we reuse [Dream](https://huggingface.co/Dream-org/Dream-v0-Base-7B)'s modeling architecture and generation utils.
|
|
|
16 |
|
17 |
- Benchmarks: Strong baseline performance on HumanEval, MBPP and BigCodeBench.
|
18 |
|
|
|
19 |
#### More details and usage examples:
|
20 |
|
21 |
- Paper: [DiffuCoder: Understanding and Improving Masked Diffusion Models for Code Generation](https://arxiv.org/abs/2506.20639)
|
22 |
|
23 |
- GitHub: https://github.com/apple/ml-diffucoder
|
24 |
|
25 |
+
```
|
26 |
+
import torch
|
27 |
+
from transformers import AutoModel, AutoTokenizer
|
28 |
+
|
29 |
+
model_path = "apple/DiffuCoder-7B-Base"
|
30 |
+
model = AutoModel.from_pretrained(model_path, torch_dtype=torch.bfloat16, trust_remote_code=True)
|
31 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
32 |
+
model = model.to("cuda").eval()
|
33 |
+
|
34 |
+
prompt = """
|
35 |
+
from typing import List
|
36 |
+
|
37 |
+
def has_close_elements(numbers: List[float], threshold: float) -> bool:
|
38 |
+
\"\"\"
|
39 |
+
Check if in given list of numbers, are any two numbers closer to each other than given threshold.
|
40 |
+
>>> has_close_elements([1.0, 2.0, 3.0], 0.5)
|
41 |
+
False
|
42 |
+
>>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)
|
43 |
+
True
|
44 |
+
\"\"\"
|
45 |
+
"""
|
46 |
+
|
47 |
+
TOKEN_PER_STEP = 1 # diffusion timesteps * TOKEN_PER_STEP = total new tokens
|
48 |
+
|
49 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
50 |
+
input_ids = inputs.input_ids.to(device="cuda")
|
51 |
+
attention_mask = inputs.attention_mask.to(device="cuda")
|
52 |
+
|
53 |
+
output = model.diffusion_generate(
|
54 |
+
input_ids,
|
55 |
+
attention_mask=attention_mask,
|
56 |
+
max_new_tokens=256,
|
57 |
+
output_history=True,
|
58 |
+
return_dict_in_generate=True,
|
59 |
+
steps=256//TOKEN_PER_STEP,
|
60 |
+
temperature=0.2,
|
61 |
+
top_p=0.95,
|
62 |
+
alg="entropy",
|
63 |
+
alg_temp=0.,
|
64 |
+
)
|
65 |
+
generations = [
|
66 |
+
tokenizer.decode(g[len(p) :].tolist())
|
67 |
+
for p, g in zip(input_ids, output.sequences)
|
68 |
+
]
|
69 |
+
|
70 |
+
print(generations[0].split(tokenizer.eos_token)[0])
|
71 |
+
```
|
72 |
+
|
73 |
#### Acknowledgement
|
74 |
To power this HuggingFace model release, we reuse [Dream](https://huggingface.co/Dream-org/Dream-v0-Base-7B)'s modeling architecture and generation utils.
|