Back to all models
question-answering mask_token: [MASK]
Query this model
πŸ”₯ This model is currently loaded and running on the Inference API. ⚠️ This model could not be loaded by the inference API. ⚠️ This model can be loaded on the Inference API on-demand.
JSON Output
API endpoint
								curl -X POST \
-H "Content-Type: application/json" \
-d '{"question": "Where does she live?", "context": "She lives in Berlin."}' \
Share Copied link to clipboard

Monthly model downloads

aodiniz/bert_uncased_L-10_H-512_A-8_cord19-200616_squad2 aodiniz/bert_uncased_L-10_H-512_A-8_cord19-200616_squad2
last 30 days



Contributed by

aodiniz Adriano Orsoni Diniz
35 models

How to use this model directly from the πŸ€—/transformers library:

Copy to clipboard
from transformers import AutoTokenizer, AutoModelForQuestionAnswering tokenizer = AutoTokenizer.from_pretrained("aodiniz/bert_uncased_L-10_H-512_A-8_cord19-200616_squad2") model = AutoModelForQuestionAnswering.from_pretrained("aodiniz/bert_uncased_L-10_H-512_A-8_cord19-200616_squad2")

BERT L-10 H-512 CORD-19 (2020/06/16) fine-tuned on SQuAD v2.0

BERT model with 10 Transformer layers and hidden embedding of size 512, referenced in Well-Read Students Learn Better: On the Importance of Pre-training Compact Models, fine-tuned for MLM on CORD-19 dataset (as released on 2020/06/16) and fine-tuned for QA on SQuAD v2.0.

Training the model

    --model_type bert
    --model_name_or_path aodiniz/bert_uncased_L-10_H-512_A-8_cord19-200616
    --train_file 'train-v2.0.json'
    --predict_file 'dev-v2.0.json'
    --max_seq_length 384
    --per_gpu_train_batch_size 10
    --learning_rate 3e-5
    --num_train_epochs 2
    --output_dir bert_uncased_L-10_H-512_A-8_cord19-200616_squad2