YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
BERT L-10 H-512 fine-tuned on MLM (CORD-19 2020/06/16)
BERT model with 10 Transformer layers and hidden embedding of size 512, referenced in Well-Read Students Learn Better: On the Importance of Pre-training Compact Models, fine-tuned for MLM on CORD-19 dataset (as released on 2020/06/16).
Training the model
python run_language_modeling.py
--model_type bert
--model_name_or_path google/bert_uncased_L-10_H-512_A-8
--do_train
--train_data_file {cord19-200616-dataset}
--mlm
--mlm_probability 0.2
--line_by_line
--block_size 512
--per_device_train_batch_size 10
--learning_rate 3e-5
--num_train_epochs 2
--output_dir bert_uncased_L-10_H-512_A-8_cord19-200616
- Downloads last month
- 9
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.