Lora finetuning on Wikipedia-10, applying counter factual data augmentation (CDA)
- Dataset: Wikipedia-10
- Target modules = ["q_proj", "k_proj", "v_proj", "dense", "fc1", "fc2"]
{
"epoch": 2.8503986104306773,
"total_flos": 1.0451807295707516e+18,
"train_loss": 0.7933661967515946,
"train_runtime": 65423.383,
"train_samples": 22453,
"train_samples_per_second": 0.978,
"train_steps_per_second": 0.031
}
Training script: https://github.com/ao9000/bias-bench/blob/main/experiments/run_clm.py
- Downloads last month
- 5
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.