Edit model card

wav2vec2-large-xls-r-300m-or

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6618
  • Wer: 0.5166

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.12
  • num_epochs: 240

Training results

Training Loss Epoch Step Validation Loss Wer
6.0493 23.53 400 2.9728 1.0
0.5306 47.06 800 1.2895 0.6138
0.1253 70.59 1200 1.6854 0.5703
0.0763 94.12 1600 1.9433 0.5870
0.0552 117.65 2000 1.4393 0.5575
0.0382 141.18 2400 1.4665 0.5537
0.0286 164.71 2800 1.5441 0.5320
0.0212 188.24 3200 1.6502 0.5115
0.0168 211.76 3600 1.6411 0.5332
0.0129 235.29 4000 1.6618 0.5166

Framework versions

  • Transformers 4.16.0
  • Pytorch 1.10.0+cu111
  • Datasets 1.18.0
  • Tokenizers 0.10.3

Evaluation Commands

  1. To evaluate on mozilla-foundation/common_voice_7_0 with split test
python eval.py --model_id anuragshas/wav2vec2-large-xls-r-300m-or --dataset mozilla-foundation/common_voice_7_0 --config or --split test

Inference With LM

import torch
from datasets import load_dataset
from transformers import AutoModelForCTC, AutoProcessor
import torchaudio.functional as F
model_id = "anuragshas/wav2vec2-large-xls-r-300m-or"
sample_iter = iter(load_dataset("mozilla-foundation/common_voice_7_0", "or", split="test", streaming=True, use_auth_token=True))
sample = next(sample_iter)
resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy()
model = AutoModelForCTC.from_pretrained(model_id)
processor = AutoProcessor.from_pretrained(model_id)
input_values = processor(resampled_audio, return_tensors="pt").input_values
with torch.no_grad():
    logits = model(input_values).logits
transcription = processor.batch_decode(logits.numpy()).text
# => "ପରରାଏ ବାଲା ଗସ୍ତି ଫାଣ୍ଡି ଗୋପାଳ ପରଠାରୁ ଦେଢ଼କଶ ଦୂର"

Eval results on Common Voice 7 "test" (WER):

Without LM With LM (run ./eval.py)
51.92 47.186
Downloads last month
0
Hosted inference API
or or
This model can be loaded on the Inference API on-demand.

Dataset used to train anuragshas/wav2vec2-large-xls-r-300m-or

Evaluation results