Edit model card

Wav2Vec2-Large-XLSR-53-Hungarian

Fine-tuned facebook/wav2vec2-large-xlsr-53 on Hungarian using the Common Voice dataset. When using this model, make sure that your speech input is sampled at 16kHz.

Usage

The model can be used directly (without a language model) as follows:

import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor

test_dataset = load_dataset("common_voice", "hu", split="test[:2%]")

processor = Wav2Vec2Processor.from_pretrained("anton-l/wav2vec2-large-xlsr-53-hungarian")
model = Wav2Vec2ForCTC.from_pretrained("anton-l/wav2vec2-large-xlsr-53-hungarian")

resampler = torchaudio.transforms.Resample(48_000, 16_000)

# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
    speech_array, sampling_rate = torchaudio.load(batch["path"])
    batch["speech"] = resampler(speech_array).squeeze().numpy()
    return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)

with torch.no_grad():
    logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits

predicted_ids = torch.argmax(logits, dim=-1)

print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])

Evaluation

The model can be evaluated as follows on the Hungarian test data of Common Voice.

import torch
import torchaudio
import urllib.request
import tarfile
import pandas as pd
from tqdm.auto import tqdm
from datasets import load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor

# Download the raw data instead of using HF datasets to save disk space 
data_url = "https://voice-prod-bundler-ee1969a6ce8178826482b88e843c335139bd3fb4.s3.amazonaws.com/cv-corpus-6.1-2020-12-11/hu.tar.gz"
filestream = urllib.request.urlopen(data_url)
data_file = tarfile.open(fileobj=filestream, mode="r|gz")
data_file.extractall()

wer = load_metric("wer")

processor = Wav2Vec2Processor.from_pretrained("anton-l/wav2vec2-large-xlsr-53-hungarian")
model = Wav2Vec2ForCTC.from_pretrained("anton-l/wav2vec2-large-xlsr-53-hungarian")
model.to("cuda")

cv_test = pd.read_csv("cv-corpus-6.1-2020-12-11/hu/test.tsv", sep='\t')
clips_path = "cv-corpus-6.1-2020-12-11/hu/clips/"

def clean_sentence(sent):
    sent = sent.lower()
    # replace non-alpha characters with space
    sent = "".join(ch if ch.isalpha() else " " for ch in sent)
    # remove repeated spaces
    sent = " ".join(sent.split())
    return sent

targets = []
preds = []

for i, row in tqdm(cv_test.iterrows(), total=cv_test.shape[0]):
    row["sentence"] = clean_sentence(row["sentence"])
    speech_array, sampling_rate = torchaudio.load(clips_path + row["path"])
    resampler = torchaudio.transforms.Resample(sampling_rate, 16_000)
    row["speech"] = resampler(speech_array).squeeze().numpy()

    inputs = processor(row["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)

    with torch.no_grad():
        logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits

    pred_ids = torch.argmax(logits, dim=-1)

    targets.append(row["sentence"])
    preds.append(processor.batch_decode(pred_ids)[0])

print("WER: {:2f}".format(100 * wer.compute(predictions=preds, references=targets)))

Test Result: 42.26 %

Training

The Common Voice train and validation datasets were used for training.

Downloads last month
13
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train anton-l/wav2vec2-large-xlsr-53-hungarian

Evaluation results