YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

Model Card for BERT Slot Filling Model

This BERT-based model is designed for slot filling tasks in natural language sentences, ideal for extracting specific information in applications like chatbots and virtual assistants.

For example: input: Transfer $500 from checking to student savings output: transfer [$500:B-amount] from [checking:B-account-from] to [student:B-account-to] [savings:I-account-to]

The model was trained with dataset https://github.com/SunLemuria/JointBERT-Tensorflow1/blob/master/data/

Please make yourself familiar with BERT: BERT for Joint Intent Classification and Slot Filling https://arxiv.org/pdf/1902.10909.pdf

Model Details

Tag Definition
B-account-from Start of the source account in a transaction.
I-account-from Complement of the source account in a transaction.
B-account-to Start of the target account in a transaction.
I-account-to Complement of the target account in a transaction.
B-bill_type Start of the type of bill or service.
I-bill_type Complement of the type of bill or service.
B-transaction-from Start of the origin of a transaction or fraud.
I-transaction-from Complement of the origin of a transaction or fraud.
B-transaction-to Start of the destination or end of a transaction or fraud.
I-transaction-to Complement of the destination of a transaction or fraud.
B-amount Start of a specified amount of money.
I-amount Complement of a specified amount of money.
B-timeRange Start of a specific time range or date.
I-timeRange Complement of a specific time range or date.

Model Description

  • Developed by: Andy González
  • Model type: Token Classification
  • Language(s) (NLP): English
  • Finetuned from model [optional]: bert-base-uncased

How to Get Started with the Model

!pip install torch transformers

import os
import requests
import torch
from transformers import BertForTokenClassification, BertTokenizerFast

# URL y archivo para los slots
slots_url = 'https://huggingface.co/andgonzalez/bert-uncased-slot-filling/raw/main/slots.txt'
slots_file = 'slots.txt'
device = "cpu"

# Descargar y guardar los slots si no existen
if not os.path.exists(slots_file):
    response = requests.get(slots_url)
    response.raise_for_status()
    with open(slots_file, 'w') as file:
        file.write(response.text)

# Leer los slots
with open(slots_file, 'r') as file:
    slot_labels = file.read().splitlines()

# Cargar el tokenizador y el modelo
tokenizer = BertTokenizerFast.from_pretrained('andgonzalez/bert-uncased-slot-filling')
model = BertForTokenClassification.from_pretrained('andgonzalez/bert-uncased-slot-filling')

# Ejemplo 
sentence = "Transfer $500 from checking to student savings"

inputs = tokenizer(sentence, truncation=True, padding='max_length', max_length=20, return_tensors="pt")
inputs = {k: v.to(device) for k, v in inputs.items()}

with torch.no_grad():
    model.eval()
    outputs = model(**inputs)

# Procesar los logits para obtener predicciones
logits = outputs.logits
predictions = torch.argmax(logits, dim=2).squeeze().cpu().numpy()
words = tokenizer.convert_ids_to_tokens(inputs["input_ids"].squeeze().cpu().numpy())

# Inicializar skip_next
skip_next = False

# Formatear la oracion
formatted_sentence = []
for i, (word, pred) in enumerate(zip(words, predictions)):
    if word not in ['[PAD]', '[SEP]', '[CLS]']:
        label = slot_labels[pred]

        if word == "$" and i + 1 < len(words) and words[i + 1].replace("##", "").isdigit():
            next_word = words[i + 1].replace("##", "")
            combined_word = word + next_word
            formatted_word = f'[{combined_word}:{label}]'
            formatted_sentence.append(formatted_word)
            skip_next = True
        elif skip_next:
            skip_next = False
            continue
        elif not word.startswith("##"):
            if label != 'O':
                formatted_word = f'[{word}:{label}]'
            else:
                formatted_word = word
            formatted_sentence.append(formatted_word)

formatted_sentence = ' '.join(formatted_sentence)
print(formatted_sentence)

Training Details

Metrics

  • Metrics used: Precision, Recall, F1-Score

Results

  • Epoch 1: Loss: 1.3253, Precision: 0.5862, Recall: 0.5758, F1-Score: 0.5633
  • Epoch 2: Loss: 0.3507, Precision: 0.7491, Recall: 0.7476, F1-Score: 0.7374
  • Epoch 3: Loss: 0.2156, Precision: 0.8180, Recall: 0.8138, F1-Score: 0.8007
  • Epoch 4: Loss: 0.1593, Precision: 0.8252, Recall: 0.8274, F1-Score: 0.8173
  • Epoch 5: Loss: 0.1236, Precision: 0.8613, Recall: 0.8549, F1-Score: 0.8466
  • Epoch 6: Loss: 0.0961, Precision: 0.8839, Recall: 0.8810, F1-Score: 0.8786
  • Epoch 7: Loss: 0.0787, Precision: 0.8795, Recall: 0.8917, F1-Score: 0.8808
  • Epoch 8: Loss: 0.0644, Precision: 0.8956, Recall: 0.8958, F1-Score: 0.8911
  • Epoch 9: Loss: 0.0542, Precision: 0.8889, Recall: 0.9012, F1-Score: 0.8913
  • Epoch 10: Loss: 0.0468, Precision: 0.8980, Recall: 0.9007, F1-Score: 0.8935
  • Best Model: Epoch 8, Test Loss: 0.1588

Plots

image/png

Downloads last month
9
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.