YOLOv5s model trained on COCO
YOLOv5s is the small version of YOLOv5 model trained on COCO object detection (118k annotated images) at resolution 640x640. It was released in https://github.com/ultralytics/yolov5.
We develop a modified version that could be supported by AMD Ryzen AI.
Model description
YOLOv5 π is the world's most loved vision AI, representing Ultralytics open-source research into future vision AI methods, incorporating lessons learned and best practices evolved over thousands of hours of research and development.
Intended uses & limitations
You can use the raw model for object detection. See the model hub to look for all available YOLOv5 models.
How to use
Installation
Follow Ryzen AI Installation to prepare the environment for Ryzen AI. Run the following script to install pre-requisites for this model.
pip install -r requirements.txt
Data Preparation (optional: for accuracy evaluation)
The dataset MSCOCO2017 contains 118287 images for training and 5000 images for validation.
Download COCO dataset and create directories in your code like this:
βββ datasets
βββ coco
βββ annotations
| βββ instances_val2017.json
| βββ ...
βββ labels
| βββ val2017
| | βββ 000000000139.txt
| βββ 000000000285.txt
| βββ ...
βββ images
| βββ val2017
| | βββ 000000000139.jpg
| βββ 000000000285.jpg
βββ val2017.txt
- put the val2017 image folder under images directory or use a softlink
- the labels folder and val2017.txt above are generate by general_json2yolo.py
- modify the coco.yaml like this:
path: /path/to/your/datasets/coco # dataset root dir
train: train2017.txt # train images (relative to 'path') 118287 images
val: val2017.txt # val images (relative to 'path') 5000 images
Test & Evaluation
- Code snippet from
infer_onnx.py
on how to use
args = make_parser().parse_args()
onnx_path = args.onnx_model
onnx_weight = onnxruntime.InferenceSession(onnx_path)
grid = np.load("./grid.npy", allow_pickle=True)
anchor_grid = np.load("./anchor_grid.npy", allow_pickle=True)
path = args.image_path
new_path = args.output_path
conf_thres, iou_thres, classes, agnostic_nms, max_det = 0.25, 0.45, None, False, 1000
img0 = cv2.imread(path)
img = pre_process(img0)
onnx_input = {onnx_weight.get_inputs()[0].name: img}
onnx_output = onnx_weight.run(None, onnx_input)
onnx_output = post_process(onnx_output)
pred = non_max_suppression(
onnx_output[0], conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det
)
colors = Colors()
det = pred[0]
im0 = img0.copy()
annotator = Annotator(im0, line_width=2, example=str(names))
if len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
# Write results
for *xyxy, conf, cls in reversed(det):
c = int(cls) # integer class
label = f"{names[c]} {conf:.2f}"
annotator.box_label(xyxy, label, color=colors(c, True))
# Stream results
im0 = annotator.result()
cv2.imwrite(new_path, im0)
- Run inference for a single image
python infer_onnx.py --onnx_model ./yolov5s.onnx -i /Path/To/Your/Image --ipu --provider_config /Path/To/Your/Provider_config
Note: vaip_config.json is located at the setup package of Ryzen AI (refer to Installation)
- Test accuracy of the quantized model
python eval_onnx.py --onnx_model ./yolov5s.onnx --ipu --provider_config /Path/To/Your/Provider_config
Performance
Metric | Accuracy on IPU |
---|---|
AP@0.50:0.95 | 0.356 |
@software{glenn_jocher_2021_5563715,
author = {Glenn Jocher et. al.},
title = {{ultralytics/yolov5: v6.0 - YOLOv5n 'Nano' models,
Roboflow integration, TensorFlow export, OpenCV
DNN support}},
month = oct,
year = 2021,
publisher = {Zenodo},
version = {v6.0},
doi = {10.5281/zenodo.5563715},
url = {https://doi.org/10.5281/zenodo.5563715}
}