amazingvince/Not-WizardLM-2-7B
Included is code ripped from fastchat with the expected chat templating.
Also wiz.pdf is a pdf of the github blog showing the apache 2 release. Link to wayback machine included: https://web.archive.org/web/20240415221214/https://wizardlm.github.io/WizardLM2/
example
import dataclasses
from enum import auto, Enum
from typing import List, Tuple, Any
class SeparatorStyle(Enum):
"""Different separator style."""
SINGLE = auto()
TWO = auto()
@dataclasses.dataclass
class Conversation:
"""A class that keeps all conversation history."""
system: str
roles: List[str]
messages: List[List[str]]
offset: int
sep_style: SeparatorStyle = SeparatorStyle.SINGLE
sep: str = "###"
sep2: str = None
# Used for gradio server
skip_next: bool = False
conv_id: Any = None
def get_prompt(self):
if self.sep_style == SeparatorStyle.SINGLE:
ret = self.system
for role, message in self.messages:
if message:
ret += self.sep + " " + role + ": " + message
else:
ret += self.sep + " " + role + ":"
return ret
elif self.sep_style == SeparatorStyle.TWO:
seps = [self.sep, self.sep2]
ret = self.system + seps[0]
for i, (role, message) in enumerate(self.messages):
if message:
ret += role + ": " + message + seps[i % 2]
else:
ret += role + ":"
return ret
else:
raise ValueError(f"Invalid style: {self.sep_style}")
def append_message(self, role, message):
self.messages.append([role, message])
def to_gradio_chatbot(self):
ret = []
for i, (role, msg) in enumerate(self.messages[self.offset:]):
if i % 2 == 0:
ret.append([msg, None])
else:
ret[-1][-1] = msg
return ret
def copy(self):
return Conversation(
system=self.system,
roles=self.roles,
messages=[[x, y] for x, y in self.messages],
offset=self.offset,
sep_style=self.sep_style,
sep=self.sep,
sep2=self.sep2,
conv_id=self.conv_id)
def dict(self):
return {
"system": self.system,
"roles": self.roles,
"messages": self.messages,
"offset": self.offset,
"sep": self.sep,
"sep2": self.sep2,
"conv_id": self.conv_id,
}
conv = Conversation(
system="A chat between a curious user and an artificial intelligence assistant. "
"The assistant gives helpful, detailed, and polite answers to the user's questions.",
roles=("USER", "ASSISTANT"),
messages=[],
offset=0,
sep_style=SeparatorStyle.TWO,
sep=" ",
sep2="</s>",
)
conv.append_message(conv.roles[0], "Why would Microsoft take this down?")
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
result = model.generate(**inputs, max_new_tokens=1000)
generated_ids = result[0]
generated_text = tokenizer.decode(generated_ids, skip_special_tokens=True)
print(generated_text)
- Downloads last month
- 60
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.