amazingvince/Not-WizardLM-2-7B

Open In Colab

Included is code ripped from fastchat with the expected chat templating.

Also wiz.pdf is a pdf of the github blog showing the apache 2 release. Link to wayback machine included: https://web.archive.org/web/20240415221214/https://wizardlm.github.io/WizardLM2/

example

import dataclasses
from enum import auto, Enum
from typing import List, Tuple, Any


class SeparatorStyle(Enum):
    """Different separator style."""
    SINGLE = auto()
    TWO = auto()


@dataclasses.dataclass
class Conversation:
    """A class that keeps all conversation history."""
    system: str
    roles: List[str]
    messages: List[List[str]]
    offset: int
    sep_style: SeparatorStyle = SeparatorStyle.SINGLE
    sep: str = "###"
    sep2: str = None

    # Used for gradio server
    skip_next: bool = False
    conv_id: Any = None

    def get_prompt(self):
        if self.sep_style == SeparatorStyle.SINGLE:
            ret = self.system
            for role, message in self.messages:
                if message:
                    ret += self.sep + " " + role + ": " + message
                else:
                    ret += self.sep + " " + role + ":"
            return ret
        elif self.sep_style == SeparatorStyle.TWO:
            seps = [self.sep, self.sep2]
            ret = self.system + seps[0]
            for i, (role, message) in enumerate(self.messages):
                if message:
                    ret += role + ": " + message + seps[i % 2]
                else:
                    ret += role + ":"
            return ret
        else:
            raise ValueError(f"Invalid style: {self.sep_style}")

    def append_message(self, role, message):
        self.messages.append([role, message])

    def to_gradio_chatbot(self):
        ret = []
        for i, (role, msg) in enumerate(self.messages[self.offset:]):
            if i % 2 == 0:
                ret.append([msg, None])
            else:
                ret[-1][-1] = msg
        return ret

    def copy(self):
        return Conversation(
            system=self.system,
            roles=self.roles,
            messages=[[x, y] for x, y in self.messages],
            offset=self.offset,
            sep_style=self.sep_style,
            sep=self.sep,
            sep2=self.sep2,
            conv_id=self.conv_id)

    def dict(self):
        return {
            "system": self.system,
            "roles": self.roles,
            "messages": self.messages,
            "offset": self.offset,
            "sep": self.sep,
            "sep2": self.sep2,
            "conv_id": self.conv_id,
        }



conv = Conversation(
    system="A chat between a curious user and an artificial intelligence assistant. "
           "The assistant gives helpful, detailed, and polite answers to the user's questions.",
    roles=("USER", "ASSISTANT"),
    messages=[],
    offset=0,
    sep_style=SeparatorStyle.TWO,
    sep=" ",
    sep2="</s>",
)

conv.append_message(conv.roles[0], "Why would Microsoft take this down?")
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()

inputs = tokenizer(prompt, return_tensors="pt").to(model.device)

result = model.generate(**inputs, max_new_tokens=1000)
generated_ids = result[0]
generated_text = tokenizer.decode(generated_ids, skip_special_tokens=True)
print(generated_text)
Downloads last month
412
Safetensors
Model size
7.24B params
Tensor type
BF16
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for amazingvince/Not-WizardLM-2-7B

Finetunes
2 models
Merges
8 models
Quantizations
4 models

Spaces using amazingvince/Not-WizardLM-2-7B 7