food_classifier_2025_03_18_16_59
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.5255
- Accuracy: 0.8685
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 1024
- total_eval_batch_size: 512
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 18
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
2.9159 | 1.0 | 74 | 2.4218 | 0.7535 |
1.1351 | 2.0 | 148 | 0.9153 | 0.7947 |
0.8865 | 3.0 | 222 | 0.7425 | 0.8156 |
0.7163 | 4.0 | 296 | 0.6753 | 0.8282 |
0.6342 | 5.0 | 370 | 0.6400 | 0.836 |
0.5685 | 6.0 | 444 | 0.6111 | 0.8429 |
0.485 | 7.0 | 518 | 0.5900 | 0.8477 |
0.4249 | 8.0 | 592 | 0.5912 | 0.8471 |
0.3848 | 9.0 | 666 | 0.5799 | 0.8510 |
0.3423 | 10.0 | 740 | 0.5770 | 0.8497 |
0.299 | 11.0 | 814 | 0.5522 | 0.8596 |
0.2897 | 12.0 | 888 | 0.5530 | 0.8592 |
0.2343 | 13.0 | 962 | 0.5402 | 0.8644 |
0.215 | 14.0 | 1036 | 0.5387 | 0.8631 |
0.2141 | 15.0 | 1110 | 0.5435 | 0.8670 |
0.2051 | 16.0 | 1184 | 0.5289 | 0.8682 |
0.1874 | 17.0 | 1258 | 0.5318 | 0.868 |
0.1664 | 18.0 | 1332 | 0.5255 | 0.8685 |
Framework versions
- Transformers 4.49.0
- Pytorch 2.6.0+cu124
- Datasets 3.3.2
- Tokenizers 0.21.0
- Downloads last month
- 7
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for amarsaikhan/food_classifier_5e-4_18
Base model
google/vit-base-patch16-224-in21k