food_classifier_2025_03_18_16_59

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5255
  • Accuracy: 0.8685

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 1024
  • total_eval_batch_size: 512
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 18

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.9159 1.0 74 2.4218 0.7535
1.1351 2.0 148 0.9153 0.7947
0.8865 3.0 222 0.7425 0.8156
0.7163 4.0 296 0.6753 0.8282
0.6342 5.0 370 0.6400 0.836
0.5685 6.0 444 0.6111 0.8429
0.485 7.0 518 0.5900 0.8477
0.4249 8.0 592 0.5912 0.8471
0.3848 9.0 666 0.5799 0.8510
0.3423 10.0 740 0.5770 0.8497
0.299 11.0 814 0.5522 0.8596
0.2897 12.0 888 0.5530 0.8592
0.2343 13.0 962 0.5402 0.8644
0.215 14.0 1036 0.5387 0.8631
0.2141 15.0 1110 0.5435 0.8670
0.2051 16.0 1184 0.5289 0.8682
0.1874 17.0 1258 0.5318 0.868
0.1664 18.0 1332 0.5255 0.8685

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.6.0+cu124
  • Datasets 3.3.2
  • Tokenizers 0.21.0
Downloads last month
7
Safetensors
Model size
85.9M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for amarsaikhan/food_classifier_5e-4_18

Finetuned
(2009)
this model