food_classifier_2025_03_18_20_39

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5122
  • Accuracy: 0.8746

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0006
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 2048
  • total_eval_batch_size: 512
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 18

Training results

Training Loss Epoch Step Validation Loss Accuracy
3.9399 1.0 37 3.1445 0.7088
1.578 2.0 74 1.1087 0.7971
0.9126 3.0 111 0.7459 0.8190
0.7204 4.0 148 0.6649 0.8352
0.611 5.0 185 0.6167 0.8424
0.5583 6.0 222 0.5946 0.8468
0.4702 7.0 259 0.5649 0.8561
0.4427 8.0 296 0.5751 0.8512
0.3757 9.0 333 0.5720 0.8535
0.3356 10.0 370 0.5514 0.8589
0.3129 11.0 407 0.5458 0.8612
0.2894 12.0 444 0.5399 0.8595
0.2513 13.0 481 0.5293 0.8675
0.2419 14.0 518 0.5299 0.868
0.2137 15.0 555 0.5250 0.8703
0.2215 16.0 592 0.5194 0.8676
0.2046 17.0 629 0.5201 0.8689
0.1864 18.0 666 0.5122 0.8746

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.6.0+cu124
  • Datasets 3.3.2
  • Tokenizers 0.21.0
Downloads last month
49
Safetensors
Model size
85.9M params
Tensor type
F32
ยท
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for amarsaikhan/food_classifier_2025_03_18_20_39

Finetuned
(2006)
this model

Space using amarsaikhan/food_classifier_2025_03_18_20_39 1