food_classifier_2025_03_18_16_54

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5833
  • Accuracy: 0.8590

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0008
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 512
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 18

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.4822 1.0 148 1.1709 0.7706
1.1289 2.0 296 0.9941 0.7532
1.0792 3.0 444 0.8941 0.7688
0.9375 4.0 592 0.8315 0.7819
0.824 5.0 740 0.7796 0.7937
0.7217 6.0 888 0.7349 0.8068
0.6162 7.0 1036 0.7319 0.8074
0.5565 8.0 1184 0.7035 0.8164
0.479 9.0 1332 0.7102 0.8156
0.4276 10.0 1480 0.7001 0.8190
0.4123 11.0 1628 0.6803 0.8255
0.3206 12.0 1776 0.6701 0.8306
0.2767 13.0 1924 0.6520 0.8365
0.2511 14.0 2072 0.6381 0.8416
0.2338 15.0 2220 0.6207 0.8463
0.1919 16.0 2368 0.6172 0.8499
0.1828 17.0 2516 0.5954 0.8552
0.1606 18.0 2664 0.5833 0.8590

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.6.0+cu126
  • Datasets 3.4.1
  • Tokenizers 0.21.1
Downloads last month
9
Safetensors
Model size
85.9M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for amarsaikhan/food_classifier_2025_03_18_16_54

Finetuned
(2008)
this model