RoBERTa-Base-SE2025T11A-sun-v20250110163150
This model is a fine-tuned version of w11wo/sundanese-roberta-base-emotion-classifier on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.4436
- F1 Macro: 0.6523
- F1 Micro: 0.6735
- F1 Weighted: 0.6709
- F1 Samples: 0.6912
- F1 Label Marah: 0.5455
- F1 Label Jijik: 0.5841
- F1 Label Takut: 0.62
- F1 Label Senang: 0.8557
- F1 Label Sedih: 0.7586
- F1 Label Terkejut: 0.5827
- F1 Label Biasa: 0.6197
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 8
Training results
Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 Micro | F1 Weighted | F1 Samples | F1 Label Marah | F1 Label Jijik | F1 Label Takut | F1 Label Senang | F1 Label Sedih | F1 Label Terkejut | F1 Label Biasa |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.4911 | 0.1133 | 100 | 0.4184 | 0.2071 | 0.3651 | 0.2613 | 0.2732 | 0.0 | 0.0 | 0.2 | 0.7415 | 0.5082 | 0.0 | 0.0 |
0.4262 | 0.2265 | 200 | 0.3827 | 0.2041 | 0.3847 | 0.2651 | 0.2849 | 0.1194 | 0.0 | 0.0364 | 0.7946 | 0.4783 | 0.0 | 0.0 |
0.3782 | 0.3398 | 300 | 0.3639 | 0.2957 | 0.4219 | 0.3527 | 0.3187 | 0.3457 | 0.0 | 0.3125 | 0.7817 | 0.3614 | 0.2683 | 0.0 |
0.3915 | 0.4530 | 400 | 0.3406 | 0.3582 | 0.4513 | 0.4089 | 0.3420 | 0.3 | 0.0938 | 0.4225 | 0.6988 | 0.6667 | 0.3256 | 0.0 |
0.3679 | 0.5663 | 500 | 0.3157 | 0.4397 | 0.5586 | 0.4950 | 0.5068 | 0.5324 | 0.0351 | 0.5169 | 0.8040 | 0.7603 | 0.3778 | 0.0513 |
0.3427 | 0.6795 | 600 | 0.3233 | 0.4811 | 0.5635 | 0.5293 | 0.4963 | 0.3789 | 0.4865 | 0.5679 | 0.7717 | 0.7541 | 0.4086 | 0.0 |
0.3167 | 0.7928 | 700 | 0.3027 | 0.5810 | 0.6214 | 0.6015 | 0.5915 | 0.5437 | 0.4842 | 0.5957 | 0.8077 | 0.7009 | 0.4255 | 0.5091 |
0.3386 | 0.9060 | 800 | 0.2899 | 0.5747 | 0.6372 | 0.6127 | 0.5986 | 0.5556 | 0.4390 | 0.5926 | 0.8557 | 0.7642 | 0.5045 | 0.3111 |
0.3532 | 1.0193 | 900 | 0.3021 | 0.5405 | 0.6059 | 0.5761 | 0.5621 | 0.4494 | 0.5306 | 0.5455 | 0.8197 | 0.7703 | 0.3956 | 0.2727 |
0.2637 | 1.1325 | 1000 | 0.2871 | 0.6388 | 0.6701 | 0.6567 | 0.6486 | 0.6034 | 0.5631 | 0.5882 | 0.8447 | 0.7521 | 0.5098 | 0.6102 |
0.2571 | 1.2458 | 1100 | 0.2956 | 0.5832 | 0.6466 | 0.6227 | 0.6308 | 0.5926 | 0.5825 | 0.5783 | 0.8473 | 0.7368 | 0.512 | 0.2326 |
0.2784 | 1.3590 | 1200 | 0.2966 | 0.6130 | 0.6412 | 0.6314 | 0.6192 | 0.56 | 0.6087 | 0.55 | 0.7879 | 0.7778 | 0.48 | 0.5263 |
0.2635 | 1.4723 | 1300 | 0.2900 | 0.6315 | 0.6625 | 0.6508 | 0.6571 | 0.5424 | 0.5957 | 0.5897 | 0.8367 | 0.75 | 0.5299 | 0.5763 |
0.2321 | 1.5855 | 1400 | 0.3068 | 0.6164 | 0.6536 | 0.6377 | 0.6541 | 0.5981 | 0.5641 | 0.5476 | 0.8302 | 0.7273 | 0.5049 | 0.5424 |
0.2307 | 1.6988 | 1500 | 0.2955 | 0.6288 | 0.6675 | 0.6488 | 0.6577 | 0.5208 | 0.5918 | 0.62 | 0.8571 | 0.7737 | 0.4717 | 0.5667 |
0.3055 | 1.8120 | 1600 | 0.2935 | 0.6146 | 0.6409 | 0.6361 | 0.6311 | 0.5714 | 0.5905 | 0.6374 | 0.7956 | 0.75 | 0.5 | 0.4571 |
0.2718 | 1.9253 | 1700 | 0.2943 | 0.6229 | 0.6495 | 0.6436 | 0.6456 | 0.5443 | 0.4884 | 0.6118 | 0.8235 | 0.8062 | 0.5234 | 0.5625 |
0.2287 | 2.0385 | 1800 | 0.2826 | 0.6380 | 0.6675 | 0.6573 | 0.6534 | 0.5577 | 0.5962 | 0.5952 | 0.8242 | 0.7943 | 0.5357 | 0.5625 |
0.1661 | 2.1518 | 1900 | 0.2994 | 0.6476 | 0.6731 | 0.6640 | 0.6813 | 0.5439 | 0.6179 | 0.6222 | 0.8351 | 0.7941 | 0.5138 | 0.6061 |
0.1707 | 2.2650 | 2000 | 0.3110 | 0.6327 | 0.6553 | 0.6498 | 0.6547 | 0.5505 | 0.6071 | 0.6265 | 0.8114 | 0.7389 | 0.5323 | 0.5625 |
0.1758 | 2.3783 | 2100 | 0.3073 | 0.6530 | 0.6782 | 0.6689 | 0.6753 | 0.5636 | 0.5773 | 0.6374 | 0.8394 | 0.8030 | 0.5217 | 0.6286 |
0.1804 | 2.4915 | 2200 | 0.3214 | 0.6440 | 0.6643 | 0.6570 | 0.6782 | 0.5161 | 0.6549 | 0.6316 | 0.8309 | 0.7438 | 0.4957 | 0.6349 |
0.1882 | 2.6048 | 2300 | 0.3099 | 0.6474 | 0.6713 | 0.6667 | 0.6867 | 0.5109 | 0.6038 | 0.6292 | 0.8458 | 0.7671 | 0.5846 | 0.5902 |
0.1703 | 2.7180 | 2400 | 0.3297 | 0.6318 | 0.6539 | 0.6526 | 0.6621 | 0.4737 | 0.5932 | 0.5882 | 0.8495 | 0.7639 | 0.5696 | 0.5846 |
0.1564 | 2.8313 | 2500 | 0.3098 | 0.6511 | 0.6745 | 0.6707 | 0.6810 | 0.5469 | 0.5490 | 0.6237 | 0.8515 | 0.8065 | 0.5714 | 0.6087 |
0.1919 | 2.9445 | 2600 | 0.3338 | 0.6178 | 0.6511 | 0.6429 | 0.6607 | 0.5271 | 0.5536 | 0.5962 | 0.8502 | 0.7937 | 0.5041 | 0.5 |
0.1257 | 3.0578 | 2700 | 0.3282 | 0.6382 | 0.6635 | 0.6566 | 0.6646 | 0.5736 | 0.5524 | 0.5581 | 0.8384 | 0.7778 | 0.5439 | 0.6234 |
0.1441 | 3.1710 | 2800 | 0.3349 | 0.6503 | 0.6745 | 0.6686 | 0.6806 | 0.5310 | 0.6015 | 0.6292 | 0.85 | 0.7752 | 0.5593 | 0.6061 |
0.1108 | 3.2843 | 2900 | 0.3447 | 0.6442 | 0.6566 | 0.6586 | 0.6634 | 0.5468 | 0.5714 | 0.6452 | 0.7953 | 0.7534 | 0.5865 | 0.6111 |
0.1156 | 3.3975 | 3000 | 0.3475 | 0.6325 | 0.6604 | 0.6528 | 0.6658 | 0.5167 | 0.5965 | 0.6304 | 0.8342 | 0.7852 | 0.5217 | 0.5429 |
0.1416 | 3.5108 | 3100 | 0.3667 | 0.6322 | 0.6556 | 0.6539 | 0.6618 | 0.5401 | 0.5825 | 0.6598 | 0.8287 | 0.7626 | 0.544 | 0.5079 |
0.1307 | 3.6240 | 3200 | 0.3598 | 0.6359 | 0.6611 | 0.6554 | 0.6673 | 0.5246 | 0.5913 | 0.6437 | 0.8586 | 0.7536 | 0.5043 | 0.5753 |
0.1327 | 3.7373 | 3300 | 0.3663 | 0.6405 | 0.6627 | 0.6538 | 0.6759 | 0.544 | 0.608 | 0.6512 | 0.8195 | 0.7460 | 0.4950 | 0.6197 |
0.1269 | 3.8505 | 3400 | 0.3568 | 0.6512 | 0.6705 | 0.6693 | 0.6783 | 0.5484 | 0.5865 | 0.6067 | 0.8308 | 0.7874 | 0.5902 | 0.6087 |
0.103 | 3.9638 | 3500 | 0.3504 | 0.6599 | 0.6832 | 0.6782 | 0.6916 | 0.55 | 0.6415 | 0.6593 | 0.8454 | 0.7606 | 0.5827 | 0.5797 |
0.1053 | 4.0770 | 3600 | 0.3663 | 0.6484 | 0.6667 | 0.6658 | 0.6815 | 0.5397 | 0.5841 | 0.6111 | 0.8367 | 0.7869 | 0.5625 | 0.6176 |
0.1253 | 4.1903 | 3700 | 0.3617 | 0.6566 | 0.6730 | 0.6731 | 0.6827 | 0.5390 | 0.6038 | 0.6526 | 0.8197 | 0.8271 | 0.5574 | 0.5970 |
0.0799 | 4.3035 | 3800 | 0.3658 | 0.6518 | 0.6761 | 0.6705 | 0.6886 | 0.5246 | 0.6 | 0.6458 | 0.8513 | 0.7914 | 0.5528 | 0.5970 |
0.0832 | 4.4168 | 3900 | 0.3753 | 0.6504 | 0.6743 | 0.6686 | 0.6920 | 0.5556 | 0.5946 | 0.6122 | 0.8350 | 0.7794 | 0.576 | 0.6 |
0.0896 | 4.5300 | 4000 | 0.3891 | 0.6305 | 0.6572 | 0.6524 | 0.6636 | 0.5077 | 0.5455 | 0.6087 | 0.8511 | 0.7862 | 0.5470 | 0.5672 |
0.0801 | 4.6433 | 4100 | 0.3772 | 0.6514 | 0.6761 | 0.6708 | 0.6897 | 0.5345 | 0.6066 | 0.6292 | 0.8421 | 0.7832 | 0.5812 | 0.5833 |
0.0845 | 4.7565 | 4200 | 0.3902 | 0.6386 | 0.6659 | 0.6609 | 0.6801 | 0.5085 | 0.5893 | 0.6038 | 0.8511 | 0.7778 | 0.5812 | 0.5588 |
0.0564 | 4.8698 | 4300 | 0.3830 | 0.6541 | 0.6751 | 0.6739 | 0.6923 | 0.5324 | 0.5882 | 0.6517 | 0.8497 | 0.7801 | 0.592 | 0.5846 |
0.0707 | 4.9830 | 4400 | 0.3865 | 0.6532 | 0.6775 | 0.6730 | 0.6947 | 0.544 | 0.5872 | 0.6667 | 0.8528 | 0.7770 | 0.5692 | 0.5758 |
0.0484 | 5.0963 | 4500 | 0.3958 | 0.6578 | 0.6787 | 0.6781 | 0.6971 | 0.5481 | 0.5854 | 0.6739 | 0.8438 | 0.8028 | 0.5882 | 0.5625 |
0.046 | 5.2095 | 4600 | 0.3945 | 0.6475 | 0.6721 | 0.6676 | 0.6909 | 0.544 | 0.5766 | 0.6170 | 0.8557 | 0.7801 | 0.5645 | 0.5946 |
0.0619 | 5.3228 | 4700 | 0.4062 | 0.6554 | 0.6774 | 0.6751 | 0.6980 | 0.5455 | 0.5739 | 0.6517 | 0.8511 | 0.7973 | 0.5785 | 0.5897 |
0.0527 | 5.4360 | 4800 | 0.4087 | 0.6532 | 0.6784 | 0.6724 | 0.6951 | 0.5469 | 0.6 | 0.6364 | 0.8458 | 0.7826 | 0.5739 | 0.5867 |
0.0642 | 5.5493 | 4900 | 0.4131 | 0.6497 | 0.6742 | 0.6717 | 0.6890 | 0.5323 | 0.5862 | 0.6042 | 0.8482 | 0.7917 | 0.6143 | 0.5714 |
0.0604 | 5.6625 | 5000 | 0.4046 | 0.6666 | 0.6852 | 0.6829 | 0.6977 | 0.5606 | 0.6355 | 0.6744 | 0.8394 | 0.7639 | 0.5873 | 0.6053 |
0.0432 | 5.7758 | 5100 | 0.4153 | 0.6497 | 0.6674 | 0.6681 | 0.6862 | 0.5455 | 0.5983 | 0.6139 | 0.8377 | 0.7794 | 0.5734 | 0.6 |
0.0421 | 5.8890 | 5200 | 0.4215 | 0.6443 | 0.6659 | 0.6641 | 0.6834 | 0.5373 | 0.5714 | 0.6061 | 0.8449 | 0.8058 | 0.5528 | 0.5915 |
0.074 | 6.0023 | 5300 | 0.4153 | 0.6562 | 0.6758 | 0.6744 | 0.6935 | 0.5385 | 0.5714 | 0.625 | 0.8542 | 0.8029 | 0.5714 | 0.6301 |
0.0339 | 6.1155 | 5400 | 0.4230 | 0.6567 | 0.6742 | 0.6741 | 0.6965 | 0.5255 | 0.5965 | 0.6392 | 0.8421 | 0.7671 | 0.6047 | 0.6216 |
0.0373 | 6.2288 | 5500 | 0.4286 | 0.6542 | 0.6712 | 0.6723 | 0.6932 | 0.5333 | 0.5581 | 0.6742 | 0.8410 | 0.7857 | 0.5846 | 0.6027 |
0.0376 | 6.3420 | 5600 | 0.4251 | 0.6504 | 0.6736 | 0.6685 | 0.6932 | 0.5344 | 0.6034 | 0.6263 | 0.84 | 0.7826 | 0.5664 | 0.6 |
0.0306 | 6.4553 | 5700 | 0.4269 | 0.6546 | 0.6743 | 0.6728 | 0.6900 | 0.5224 | 0.5893 | 0.6327 | 0.8377 | 0.7832 | 0.608 | 0.6087 |
0.0412 | 6.5685 | 5800 | 0.4281 | 0.6596 | 0.6804 | 0.6765 | 0.7020 | 0.5669 | 0.5950 | 0.6327 | 0.8384 | 0.7857 | 0.5785 | 0.6197 |
0.0252 | 6.6818 | 5900 | 0.4256 | 0.6548 | 0.6742 | 0.6738 | 0.6925 | 0.5401 | 0.5913 | 0.6186 | 0.8482 | 0.7746 | 0.6 | 0.6111 |
0.0532 | 6.7950 | 6000 | 0.4272 | 0.6555 | 0.6757 | 0.6752 | 0.6920 | 0.5522 | 0.5965 | 0.5979 | 0.8542 | 0.7826 | 0.5942 | 0.6111 |
0.0461 | 6.9083 | 6100 | 0.4296 | 0.6552 | 0.6804 | 0.6756 | 0.6982 | 0.5469 | 0.6055 | 0.6042 | 0.8629 | 0.7724 | 0.592 | 0.6027 |
0.0271 | 7.0215 | 6200 | 0.4376 | 0.6496 | 0.6712 | 0.6686 | 0.6931 | 0.5469 | 0.55 | 0.6263 | 0.8513 | 0.7724 | 0.5827 | 0.6176 |
0.0298 | 7.1348 | 6300 | 0.4401 | 0.6545 | 0.6735 | 0.6723 | 0.6891 | 0.5547 | 0.5812 | 0.6327 | 0.8377 | 0.7857 | 0.5806 | 0.6087 |
0.0303 | 7.2480 | 6400 | 0.4384 | 0.6544 | 0.6758 | 0.6739 | 0.6919 | 0.5414 | 0.5893 | 0.6263 | 0.8497 | 0.7692 | 0.6047 | 0.6 |
0.0275 | 7.3613 | 6500 | 0.4442 | 0.6579 | 0.6779 | 0.6766 | 0.6952 | 0.5571 | 0.5965 | 0.6327 | 0.8513 | 0.7639 | 0.5954 | 0.6087 |
0.0197 | 7.4745 | 6600 | 0.4405 | 0.6503 | 0.6719 | 0.6695 | 0.6886 | 0.5455 | 0.5789 | 0.6392 | 0.8513 | 0.7483 | 0.5891 | 0.6 |
0.0284 | 7.5878 | 6700 | 0.4434 | 0.6512 | 0.6727 | 0.6707 | 0.6909 | 0.5455 | 0.5690 | 0.6392 | 0.8513 | 0.7534 | 0.6 | 0.6 |
0.0248 | 7.7010 | 6800 | 0.4418 | 0.6528 | 0.6735 | 0.6705 | 0.6914 | 0.5455 | 0.5841 | 0.6392 | 0.8513 | 0.7586 | 0.5714 | 0.6197 |
0.0288 | 7.8143 | 6900 | 0.4435 | 0.6540 | 0.675 | 0.6725 | 0.6921 | 0.5455 | 0.5841 | 0.6263 | 0.8557 | 0.7639 | 0.5827 | 0.6197 |
0.0302 | 7.9275 | 7000 | 0.4436 | 0.6523 | 0.6735 | 0.6709 | 0.6912 | 0.5455 | 0.5841 | 0.62 | 0.8557 | 0.7586 | 0.5827 | 0.6197 |
Framework versions
- Transformers 4.48.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 0
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.