RoBERTa-Base-SE2025T11A-sun-v20250110163150

This model is a fine-tuned version of w11wo/sundanese-roberta-base-emotion-classifier on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4436
  • F1 Macro: 0.6523
  • F1 Micro: 0.6735
  • F1 Weighted: 0.6709
  • F1 Samples: 0.6912
  • F1 Label Marah: 0.5455
  • F1 Label Jijik: 0.5841
  • F1 Label Takut: 0.62
  • F1 Label Senang: 0.8557
  • F1 Label Sedih: 0.7586
  • F1 Label Terkejut: 0.5827
  • F1 Label Biasa: 0.6197

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 8

Training results

Training Loss Epoch Step Validation Loss F1 Macro F1 Micro F1 Weighted F1 Samples F1 Label Marah F1 Label Jijik F1 Label Takut F1 Label Senang F1 Label Sedih F1 Label Terkejut F1 Label Biasa
0.4911 0.1133 100 0.4184 0.2071 0.3651 0.2613 0.2732 0.0 0.0 0.2 0.7415 0.5082 0.0 0.0
0.4262 0.2265 200 0.3827 0.2041 0.3847 0.2651 0.2849 0.1194 0.0 0.0364 0.7946 0.4783 0.0 0.0
0.3782 0.3398 300 0.3639 0.2957 0.4219 0.3527 0.3187 0.3457 0.0 0.3125 0.7817 0.3614 0.2683 0.0
0.3915 0.4530 400 0.3406 0.3582 0.4513 0.4089 0.3420 0.3 0.0938 0.4225 0.6988 0.6667 0.3256 0.0
0.3679 0.5663 500 0.3157 0.4397 0.5586 0.4950 0.5068 0.5324 0.0351 0.5169 0.8040 0.7603 0.3778 0.0513
0.3427 0.6795 600 0.3233 0.4811 0.5635 0.5293 0.4963 0.3789 0.4865 0.5679 0.7717 0.7541 0.4086 0.0
0.3167 0.7928 700 0.3027 0.5810 0.6214 0.6015 0.5915 0.5437 0.4842 0.5957 0.8077 0.7009 0.4255 0.5091
0.3386 0.9060 800 0.2899 0.5747 0.6372 0.6127 0.5986 0.5556 0.4390 0.5926 0.8557 0.7642 0.5045 0.3111
0.3532 1.0193 900 0.3021 0.5405 0.6059 0.5761 0.5621 0.4494 0.5306 0.5455 0.8197 0.7703 0.3956 0.2727
0.2637 1.1325 1000 0.2871 0.6388 0.6701 0.6567 0.6486 0.6034 0.5631 0.5882 0.8447 0.7521 0.5098 0.6102
0.2571 1.2458 1100 0.2956 0.5832 0.6466 0.6227 0.6308 0.5926 0.5825 0.5783 0.8473 0.7368 0.512 0.2326
0.2784 1.3590 1200 0.2966 0.6130 0.6412 0.6314 0.6192 0.56 0.6087 0.55 0.7879 0.7778 0.48 0.5263
0.2635 1.4723 1300 0.2900 0.6315 0.6625 0.6508 0.6571 0.5424 0.5957 0.5897 0.8367 0.75 0.5299 0.5763
0.2321 1.5855 1400 0.3068 0.6164 0.6536 0.6377 0.6541 0.5981 0.5641 0.5476 0.8302 0.7273 0.5049 0.5424
0.2307 1.6988 1500 0.2955 0.6288 0.6675 0.6488 0.6577 0.5208 0.5918 0.62 0.8571 0.7737 0.4717 0.5667
0.3055 1.8120 1600 0.2935 0.6146 0.6409 0.6361 0.6311 0.5714 0.5905 0.6374 0.7956 0.75 0.5 0.4571
0.2718 1.9253 1700 0.2943 0.6229 0.6495 0.6436 0.6456 0.5443 0.4884 0.6118 0.8235 0.8062 0.5234 0.5625
0.2287 2.0385 1800 0.2826 0.6380 0.6675 0.6573 0.6534 0.5577 0.5962 0.5952 0.8242 0.7943 0.5357 0.5625
0.1661 2.1518 1900 0.2994 0.6476 0.6731 0.6640 0.6813 0.5439 0.6179 0.6222 0.8351 0.7941 0.5138 0.6061
0.1707 2.2650 2000 0.3110 0.6327 0.6553 0.6498 0.6547 0.5505 0.6071 0.6265 0.8114 0.7389 0.5323 0.5625
0.1758 2.3783 2100 0.3073 0.6530 0.6782 0.6689 0.6753 0.5636 0.5773 0.6374 0.8394 0.8030 0.5217 0.6286
0.1804 2.4915 2200 0.3214 0.6440 0.6643 0.6570 0.6782 0.5161 0.6549 0.6316 0.8309 0.7438 0.4957 0.6349
0.1882 2.6048 2300 0.3099 0.6474 0.6713 0.6667 0.6867 0.5109 0.6038 0.6292 0.8458 0.7671 0.5846 0.5902
0.1703 2.7180 2400 0.3297 0.6318 0.6539 0.6526 0.6621 0.4737 0.5932 0.5882 0.8495 0.7639 0.5696 0.5846
0.1564 2.8313 2500 0.3098 0.6511 0.6745 0.6707 0.6810 0.5469 0.5490 0.6237 0.8515 0.8065 0.5714 0.6087
0.1919 2.9445 2600 0.3338 0.6178 0.6511 0.6429 0.6607 0.5271 0.5536 0.5962 0.8502 0.7937 0.5041 0.5
0.1257 3.0578 2700 0.3282 0.6382 0.6635 0.6566 0.6646 0.5736 0.5524 0.5581 0.8384 0.7778 0.5439 0.6234
0.1441 3.1710 2800 0.3349 0.6503 0.6745 0.6686 0.6806 0.5310 0.6015 0.6292 0.85 0.7752 0.5593 0.6061
0.1108 3.2843 2900 0.3447 0.6442 0.6566 0.6586 0.6634 0.5468 0.5714 0.6452 0.7953 0.7534 0.5865 0.6111
0.1156 3.3975 3000 0.3475 0.6325 0.6604 0.6528 0.6658 0.5167 0.5965 0.6304 0.8342 0.7852 0.5217 0.5429
0.1416 3.5108 3100 0.3667 0.6322 0.6556 0.6539 0.6618 0.5401 0.5825 0.6598 0.8287 0.7626 0.544 0.5079
0.1307 3.6240 3200 0.3598 0.6359 0.6611 0.6554 0.6673 0.5246 0.5913 0.6437 0.8586 0.7536 0.5043 0.5753
0.1327 3.7373 3300 0.3663 0.6405 0.6627 0.6538 0.6759 0.544 0.608 0.6512 0.8195 0.7460 0.4950 0.6197
0.1269 3.8505 3400 0.3568 0.6512 0.6705 0.6693 0.6783 0.5484 0.5865 0.6067 0.8308 0.7874 0.5902 0.6087
0.103 3.9638 3500 0.3504 0.6599 0.6832 0.6782 0.6916 0.55 0.6415 0.6593 0.8454 0.7606 0.5827 0.5797
0.1053 4.0770 3600 0.3663 0.6484 0.6667 0.6658 0.6815 0.5397 0.5841 0.6111 0.8367 0.7869 0.5625 0.6176
0.1253 4.1903 3700 0.3617 0.6566 0.6730 0.6731 0.6827 0.5390 0.6038 0.6526 0.8197 0.8271 0.5574 0.5970
0.0799 4.3035 3800 0.3658 0.6518 0.6761 0.6705 0.6886 0.5246 0.6 0.6458 0.8513 0.7914 0.5528 0.5970
0.0832 4.4168 3900 0.3753 0.6504 0.6743 0.6686 0.6920 0.5556 0.5946 0.6122 0.8350 0.7794 0.576 0.6
0.0896 4.5300 4000 0.3891 0.6305 0.6572 0.6524 0.6636 0.5077 0.5455 0.6087 0.8511 0.7862 0.5470 0.5672
0.0801 4.6433 4100 0.3772 0.6514 0.6761 0.6708 0.6897 0.5345 0.6066 0.6292 0.8421 0.7832 0.5812 0.5833
0.0845 4.7565 4200 0.3902 0.6386 0.6659 0.6609 0.6801 0.5085 0.5893 0.6038 0.8511 0.7778 0.5812 0.5588
0.0564 4.8698 4300 0.3830 0.6541 0.6751 0.6739 0.6923 0.5324 0.5882 0.6517 0.8497 0.7801 0.592 0.5846
0.0707 4.9830 4400 0.3865 0.6532 0.6775 0.6730 0.6947 0.544 0.5872 0.6667 0.8528 0.7770 0.5692 0.5758
0.0484 5.0963 4500 0.3958 0.6578 0.6787 0.6781 0.6971 0.5481 0.5854 0.6739 0.8438 0.8028 0.5882 0.5625
0.046 5.2095 4600 0.3945 0.6475 0.6721 0.6676 0.6909 0.544 0.5766 0.6170 0.8557 0.7801 0.5645 0.5946
0.0619 5.3228 4700 0.4062 0.6554 0.6774 0.6751 0.6980 0.5455 0.5739 0.6517 0.8511 0.7973 0.5785 0.5897
0.0527 5.4360 4800 0.4087 0.6532 0.6784 0.6724 0.6951 0.5469 0.6 0.6364 0.8458 0.7826 0.5739 0.5867
0.0642 5.5493 4900 0.4131 0.6497 0.6742 0.6717 0.6890 0.5323 0.5862 0.6042 0.8482 0.7917 0.6143 0.5714
0.0604 5.6625 5000 0.4046 0.6666 0.6852 0.6829 0.6977 0.5606 0.6355 0.6744 0.8394 0.7639 0.5873 0.6053
0.0432 5.7758 5100 0.4153 0.6497 0.6674 0.6681 0.6862 0.5455 0.5983 0.6139 0.8377 0.7794 0.5734 0.6
0.0421 5.8890 5200 0.4215 0.6443 0.6659 0.6641 0.6834 0.5373 0.5714 0.6061 0.8449 0.8058 0.5528 0.5915
0.074 6.0023 5300 0.4153 0.6562 0.6758 0.6744 0.6935 0.5385 0.5714 0.625 0.8542 0.8029 0.5714 0.6301
0.0339 6.1155 5400 0.4230 0.6567 0.6742 0.6741 0.6965 0.5255 0.5965 0.6392 0.8421 0.7671 0.6047 0.6216
0.0373 6.2288 5500 0.4286 0.6542 0.6712 0.6723 0.6932 0.5333 0.5581 0.6742 0.8410 0.7857 0.5846 0.6027
0.0376 6.3420 5600 0.4251 0.6504 0.6736 0.6685 0.6932 0.5344 0.6034 0.6263 0.84 0.7826 0.5664 0.6
0.0306 6.4553 5700 0.4269 0.6546 0.6743 0.6728 0.6900 0.5224 0.5893 0.6327 0.8377 0.7832 0.608 0.6087
0.0412 6.5685 5800 0.4281 0.6596 0.6804 0.6765 0.7020 0.5669 0.5950 0.6327 0.8384 0.7857 0.5785 0.6197
0.0252 6.6818 5900 0.4256 0.6548 0.6742 0.6738 0.6925 0.5401 0.5913 0.6186 0.8482 0.7746 0.6 0.6111
0.0532 6.7950 6000 0.4272 0.6555 0.6757 0.6752 0.6920 0.5522 0.5965 0.5979 0.8542 0.7826 0.5942 0.6111
0.0461 6.9083 6100 0.4296 0.6552 0.6804 0.6756 0.6982 0.5469 0.6055 0.6042 0.8629 0.7724 0.592 0.6027
0.0271 7.0215 6200 0.4376 0.6496 0.6712 0.6686 0.6931 0.5469 0.55 0.6263 0.8513 0.7724 0.5827 0.6176
0.0298 7.1348 6300 0.4401 0.6545 0.6735 0.6723 0.6891 0.5547 0.5812 0.6327 0.8377 0.7857 0.5806 0.6087
0.0303 7.2480 6400 0.4384 0.6544 0.6758 0.6739 0.6919 0.5414 0.5893 0.6263 0.8497 0.7692 0.6047 0.6
0.0275 7.3613 6500 0.4442 0.6579 0.6779 0.6766 0.6952 0.5571 0.5965 0.6327 0.8513 0.7639 0.5954 0.6087
0.0197 7.4745 6600 0.4405 0.6503 0.6719 0.6695 0.6886 0.5455 0.5789 0.6392 0.8513 0.7483 0.5891 0.6
0.0284 7.5878 6700 0.4434 0.6512 0.6727 0.6707 0.6909 0.5455 0.5690 0.6392 0.8513 0.7534 0.6 0.6
0.0248 7.7010 6800 0.4418 0.6528 0.6735 0.6705 0.6914 0.5455 0.5841 0.6392 0.8513 0.7586 0.5714 0.6197
0.0288 7.8143 6900 0.4435 0.6540 0.675 0.6725 0.6921 0.5455 0.5841 0.6263 0.8557 0.7639 0.5827 0.6197
0.0302 7.9275 7000 0.4436 0.6523 0.6735 0.6709 0.6912 0.5455 0.5841 0.62 0.8557 0.7586 0.5827 0.6197

Framework versions

  • Transformers 4.48.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
0
Safetensors
Model size
125M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for alxxtexxr/RoBERTa-Base-SE2025T11A-sun-v20250110163150

Finetuned
(20)
this model