File size: 10,266 Bytes
7ff77f3
 
cd16641
7ff77f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd16641
7ff77f3
 
 
 
 
 
 
 
 
cd16641
7ff77f3
 
 
 
 
 
 
 
 
 
 
 
cd16641
7ff77f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd16641
7ff77f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd16641
7ff77f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd16641
7ff77f3
 
 
 
 
 
 
 
 
 
 
 
cd16641
7ff77f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd16641
7ff77f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd16641
7ff77f3
 
 
 
 
 
 
 
 
 
 
cd16641
7ff77f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd16641
7ff77f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd16641
7ff77f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd16641
7ff77f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd16641
 
 
 
 
7ff77f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd16641
7ff77f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd16641
7ff77f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd16641
7ff77f3
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
import re
from abc import ABC, abstractmethod
from typing import Union

import inflect
import nltk
from flair.data import Sentence
from flair.models import SequenceTagger

__all__ = [
    "DropFileExtensions",
    "DropNonAlpha",
    "DropShortWords",
    "DropSpecialCharacters",
    "DropTokens",
    "DropURLs",
    "DropWords",
    "FilterPOS",
    "FrequencyMinWordCount",
    "ReplaceSeparators",
    "ToLowercase",
    "ToSingular",
]


class BaseTextTransform(ABC):
    """Base class for string transforms."""

    @abstractmethod
    def __call__(self, text: str) -> str:
        raise NotImplementedError

    def __repr__(self) -> str:
        return f"{self.__class__.__name__}()"


class DropFileExtensions(BaseTextTransform):
    """Remove file extensions from the input text."""

    def __call__(self, text: str) -> str:
        """
        Args:
            text (str): Text to remove file extensions from.
        """
        text = re.sub(r"\.\w+", "", text)

        return text


class DropNonAlpha(BaseTextTransform):
    """Remove non-alpha words from the input text."""

    def __call__(self, text: str) -> str:
        """
        Args:
            text (str): Text to remove non-alpha words from.
        """
        text = re.sub(r"[^a-zA-Z\s]", "", text)

        return text


class DropShortWords(BaseTextTransform):
    """Remove short words from the input text.

    Args:
        min_length (int): Minimum length of words to keep.
    """

    def __init__(self, min_length) -> None:
        super().__init__()
        self.min_length = min_length

    def __call__(self, text: str) -> str:
        """
        Args:
            text (str): Text to remove short words from.
        """
        text = " ".join([word for word in text.split() if len(word) >= self.min_length])

        return text

    def __repr__(self) -> str:
        return f"{self.__class__.__name__}(min_length={self.min_length})"


class DropSpecialCharacters(BaseTextTransform):
    """Remove special characters from the input text.

    Special characters are defined as any character that is not a word character, whitespace,
    hyphen, period, apostrophe, or ampersand.
    """

    def __call__(self, text: str) -> str:
        """
        Args:
            text (str): Text to remove special characters from.
        """
        text = re.sub(r"[^\w\s\-\.\'\&]", "", text)

        return text


class DropTokens(BaseTextTransform):
    """Remove tokens from the input text.

    Tokens are defined as strings enclosed in angle brackets, e.g. <token>.
    """

    def __call__(self, text: str) -> str:
        """
        Args:
            text (str): Text to remove tokens from.
        """
        text = re.sub(r"<[^>]+>", "", text)

        return text


class DropURLs(BaseTextTransform):
    """Remove URLs from the input text."""

    def __call__(self, text: str) -> str:
        """
        Args:
            text (str): Text to remove URLs from.
        """
        text = re.sub(r"http\S+", "", text)

        return text


class DropWords(BaseTextTransform):
    """Remove words from the input text.

    It is case-insensitive and supports singular and plural forms of the words.
    """

    def __init__(self, words: list[str]) -> None:
        super().__init__()
        self.words = words
        self.pattern = r"\b(?:{})\b".format("|".join(words))

    def __call__(self, text: str) -> str:
        """
        Args:
            text (str): Text to remove words from.
        """
        text = re.sub(self.pattern, "", text, flags=re.IGNORECASE)

        return text

    def __repr__(self) -> str:
        return f"{self.__class__.__name__}(pattern={self.pattern})"


class FilterPOS(BaseTextTransform):
    """Filter words by POS tags.

    Args:
        tags (list): List of POS tags to remove.
        engine (str): POS tagger to use. Must be one of "nltk" or "flair". Defaults to "nltk".
    """

    def __init__(self, tags: list, engine: str = "nltk") -> None:
        super().__init__()
        self.tags = tags
        self.engine = engine

        if engine == "nltk":
            nltk.download("averaged_perceptron_tagger", quiet=True)
            nltk.download("punkt", quiet=True)
            self.tagger = lambda x: nltk.pos_tag(nltk.word_tokenize(x))
        elif engine == "flair":
            self.tagger = SequenceTagger.load("flair/pos-english-fast").predict

    def __call__(self, text: str) -> str:
        """
        Args:
            text (str): Text to remove words with specific POS tags from.
        """
        if self.engine == "nltk":
            word_tags = self.tagger(text)
            text = " ".join([word for word, tag in word_tags if tag not in self.tags])
        elif self.engine == "flair":
            sentence = Sentence(text)
            self.tagger(sentence)
            text = " ".join([token.text for token in sentence.tokens if token.tag in self.tags])

        return text

    def __repr__(self) -> str:
        return f"{self.__class__.__name__}(tags={self.tags}, engine={self.engine})"


class FrequencyMinWordCount(BaseTextTransform):
    """Keep only words that occur more than a minimum number of times in the input text.

    If the threshold is too strong and no words pass the threshold, the threshold is reduced to
    the most frequent word.

    Args:
        min_count (int): Minimum number of occurrences of a word to keep.
    """

    def __init__(self, min_count) -> None:
        super().__init__()
        self.min_count = min_count

    def __call__(self, text: str) -> str:
        """
        Args:
            text (str): Text to remove infrequent words from.
        """
        if self.min_count <= 1:
            return text

        words = text.split()
        word_counts = {word: words.count(word) for word in words}

        # if nothing passes the threshold, reduce the threshold to the most frequent word
        max_word_count = max(word_counts.values() or [0])
        min_count = max_word_count if self.min_count > max_word_count else self.min_count

        text = " ".join([word for word in words if word_counts[word] >= min_count])

        return text

    def __repr__(self) -> str:
        return f"{self.__class__.__name__}(min_count={self.min_count})"


class ReplaceSeparators(BaseTextTransform):
    """Replace underscores and dashes with spaces."""

    def __call__(self, text: str) -> str:
        """
        Args:
            text (str): Text to replace separators in.
        """
        text = re.sub(r"[_\-]", " ", text)

        return text

    def __repr__(self) -> str:
        return f"{self.__class__.__name__}()"


class RemoveDuplicates(BaseTextTransform):
    """Remove duplicate words from the input text."""

    def __call__(self, text: str) -> str:
        """
        Args:
            text (str): Text to remove duplicate words from.
        """
        text = " ".join(list(set(text.split())))

        return text


class TextCompose:
    """Compose several transforms together.

    It differs from the torchvision.transforms.Compose class in that it applies the transforms to
    a string instead of a PIL Image or Tensor. In addition, it automatically join the list of
    input strings into a single string and splits the output string into a list of words.

    Args:
        transforms (list): List of transforms to compose.
    """

    def __init__(self, transforms: list[BaseTextTransform]) -> None:
        self.transforms = transforms

    def __call__(self, text: Union[str, list[str]]) -> list[str]:
        """
        Args:
            text (Union[str, list[str]]): Text to transform.
        """
        if isinstance(text, list):
            text = " ".join(text)

        for t in self.transforms:
            text = t(text)
        return text.split()

    def __repr__(self) -> str:
        format_string = self.__class__.__name__ + "("
        for t in self.transforms:
            format_string += "\n"
            format_string += f"    {t}"
        format_string += "\n)"
        return format_string


class ToLowercase(BaseTextTransform):
    """Convert text to lowercase."""

    def __call__(self, text: str) -> str:
        """
        Args:
            text (str): Text to convert to lowercase.
        """
        text = text.lower()

        return text


class ToSingular(BaseTextTransform):
    """Convert plural words to singular form."""

    def __init__(self) -> None:
        super().__init__()
        self.transform = inflect.engine().singular_noun

    def __call__(self, text: str) -> str:
        """
        Args:
            text (str): Text to convert to singular form.
        """
        words = text.split()
        for i, word in enumerate(words):
            if not word.endswith("s"):
                continue

            if word[-2:] in ["ss", "us", "is"]:
                continue

            if word[-3:] in ["ies", "oes"]:
                continue

            words[i] = self.transform(word) or word

        text = " ".join(words)

        return text

    def __repr__(self) -> str:
        return f"{self.__class__.__name__}()"


def default_vocabulary_transforms() -> TextCompose:
    """Preprocess input text with preprocessing transforms."""
    words_to_drop = [
        "image",
        "photo",
        "picture",
        "thumbnail",
        "logo",
        "symbol",
        "clipart",
        "portrait",
        "painting",
        "illustration",
        "icon",
        "profile",
    ]
    pos_tags = ["NN", "NNS", "NNP", "NNPS", "JJ", "JJR", "JJS", "VBG", "VBN"]

    transforms = []
    transforms.append(DropTokens())
    transforms.append(DropURLs())
    transforms.append(DropSpecialCharacters())
    transforms.append(DropFileExtensions())
    transforms.append(ReplaceSeparators())
    transforms.append(DropShortWords(min_length=3))
    transforms.append(DropNonAlpha())
    transforms.append(ToLowercase())
    transforms.append(ToSingular())
    transforms.append(DropWords(words=words_to_drop))
    transforms.append(FrequencyMinWordCount(min_count=2))
    transforms.append(FilterPOS(tags=pos_tags, engine="flair"))
    transforms.append(RemoveDuplicates())

    transforms = TextCompose(transforms)

    return transforms