Edit model card

test_model

This model is a fine-tuned version of microsoft/layoutlmv3-base on the sroie dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0114
  • Precision: 0.9343
  • Recall: 0.9697
  • F1: 0.9517
  • Accuracy: 0.9976

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 1000

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 8.33 100 0.0292 0.8732 0.9394 0.9051 0.9928
No log 16.67 200 0.0110 0.9343 0.9697 0.9517 0.9976
No log 25.0 300 0.0130 0.9209 0.9697 0.9446 0.9971
No log 33.33 400 0.0110 0.9412 0.9697 0.9552 0.9981
0.0466 41.67 500 0.0114 0.9275 0.9697 0.9481 0.9976
0.0466 50.0 600 0.0117 0.9275 0.9697 0.9481 0.9976
0.0466 58.33 700 0.0114 0.9275 0.9697 0.9481 0.9976
0.0466 66.67 800 0.0114 0.9343 0.9697 0.9517 0.9976
0.0466 75.0 900 0.0115 0.9343 0.9697 0.9517 0.9976
0.0006 83.33 1000 0.0114 0.9343 0.9697 0.9517 0.9976

Framework versions

  • Transformers 4.28.0
  • Pytorch 2.0.0+cu118
  • Datasets 2.2.2
  • Tokenizers 0.13.3
Downloads last month
0
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results