test_model / README.md
alitavanaali's picture
update model card README.md
3509841
metadata
license: cc-by-nc-sa-4.0
tags:
  - generated_from_trainer
datasets:
  - sroie
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: test_model
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: sroie
          type: sroie
          config: discharge
          split: test
          args: discharge
        metrics:
          - name: Precision
            type: precision
            value: 0.9343065693430657
          - name: Recall
            type: recall
            value: 0.9696969696969697
          - name: F1
            type: f1
            value: 0.9516728624535317
          - name: Accuracy
            type: accuracy
            value: 0.9976019184652278

test_model

This model is a fine-tuned version of microsoft/layoutlmv3-base on the sroie dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0114
  • Precision: 0.9343
  • Recall: 0.9697
  • F1: 0.9517
  • Accuracy: 0.9976

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 1000

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 8.33 100 0.0292 0.8732 0.9394 0.9051 0.9928
No log 16.67 200 0.0110 0.9343 0.9697 0.9517 0.9976
No log 25.0 300 0.0130 0.9209 0.9697 0.9446 0.9971
No log 33.33 400 0.0110 0.9412 0.9697 0.9552 0.9981
0.0466 41.67 500 0.0114 0.9275 0.9697 0.9481 0.9976
0.0466 50.0 600 0.0117 0.9275 0.9697 0.9481 0.9976
0.0466 58.33 700 0.0114 0.9275 0.9697 0.9481 0.9976
0.0466 66.67 800 0.0114 0.9343 0.9697 0.9517 0.9976
0.0466 75.0 900 0.0115 0.9343 0.9697 0.9517 0.9976
0.0006 83.33 1000 0.0114 0.9343 0.9697 0.9517 0.9976

Framework versions

  • Transformers 4.28.0
  • Pytorch 2.0.0+cu118
  • Datasets 2.2.2
  • Tokenizers 0.13.3