metadata
license: cc-by-nc-sa-4.0
tags:
- generated_from_trainer
datasets:
- sroie
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: test_model
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: sroie
type: sroie
config: discharge
split: test
args: discharge
metrics:
- name: Precision
type: precision
value: 0.9343065693430657
- name: Recall
type: recall
value: 0.9696969696969697
- name: F1
type: f1
value: 0.9516728624535317
- name: Accuracy
type: accuracy
value: 0.9976019184652278
test_model
This model is a fine-tuned version of microsoft/layoutlmv3-base on the sroie dataset. It achieves the following results on the evaluation set:
- Loss: 0.0114
- Precision: 0.9343
- Recall: 0.9697
- F1: 0.9517
- Accuracy: 0.9976
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 1000
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 8.33 | 100 | 0.0292 | 0.8732 | 0.9394 | 0.9051 | 0.9928 |
No log | 16.67 | 200 | 0.0110 | 0.9343 | 0.9697 | 0.9517 | 0.9976 |
No log | 25.0 | 300 | 0.0130 | 0.9209 | 0.9697 | 0.9446 | 0.9971 |
No log | 33.33 | 400 | 0.0110 | 0.9412 | 0.9697 | 0.9552 | 0.9981 |
0.0466 | 41.67 | 500 | 0.0114 | 0.9275 | 0.9697 | 0.9481 | 0.9976 |
0.0466 | 50.0 | 600 | 0.0117 | 0.9275 | 0.9697 | 0.9481 | 0.9976 |
0.0466 | 58.33 | 700 | 0.0114 | 0.9275 | 0.9697 | 0.9481 | 0.9976 |
0.0466 | 66.67 | 800 | 0.0114 | 0.9343 | 0.9697 | 0.9517 | 0.9976 |
0.0466 | 75.0 | 900 | 0.0115 | 0.9343 | 0.9697 | 0.9517 | 0.9976 |
0.0006 | 83.33 | 1000 | 0.0114 | 0.9343 | 0.9697 | 0.9517 | 0.9976 |
Framework versions
- Transformers 4.28.0
- Pytorch 2.0.0+cu118
- Datasets 2.2.2
- Tokenizers 0.13.3