Edit model card

whisper-synthesized-turkish-2-hour

This model is a fine-tuned version of openai/whisper-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3457
  • Wer: 20.3461

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 2000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.3076 2.08 100 0.6286 96.2530
0.421 4.17 200 0.4269 22.7088
0.1585 6.25 300 0.2911 22.3150
0.0482 8.33 400 0.3047 16.6706
0.022 10.42 500 0.3086 16.5752
0.013 12.5 600 0.3209 19.7613
0.0049 14.58 700 0.3185 16.1575
0.0025 16.67 800 0.3278 16.7303
0.0019 18.75 900 0.3239 20.5012
0.0019 20.83 1000 0.3307 19.7613
0.0011 22.92 1100 0.3329 20.5728
0.0008 25.0 1200 0.3361 20.5609
0.0007 27.08 1300 0.3383 20.3341
0.0006 29.17 1400 0.3403 20.2029
0.0006 31.25 1500 0.3418 20.3699
0.0006 33.33 1600 0.3432 20.0477
0.0005 35.42 1700 0.3442 20.0835
0.0005 37.5 1800 0.3450 20.1313
0.0005 39.58 1900 0.3454 20.3699
0.0005 41.67 2000 0.3457 20.3461

Framework versions

  • Transformers 4.28.0.dev0
  • Pytorch 2.0.0+cu118
  • Datasets 2.11.0
  • Tokenizers 0.13.3
Downloads last month
3
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.