Chinese ControlNet Model (Depth)
简介 Brief Introduction
我们开源了一个中文 ControlNet 模型,该模型适配 diffusion 模型 alibaba-pai/pai-diffusion-artist-large-zh
,您可以使用该模型控制 diffusion 模型生成的图像。
We release a Chinese ControlNet model, which works with diffusion model alibaba-pai/pai-diffusion-artist-large-zh
. You can use this model to control the diffusion model generating images as you wish.
- Github: EasyNLP
使用 Usage
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
from transformers import pipeline
from PIL import Image
import numpy as np
import cv2
def to_depth(image):
depth_estimator = pipeline('depth-estimation')
image = depth_estimator(image)['depth']
image = np.array(image)
image = image[:, :, None]
image = np.concatenate([image, image, image], axis=2)
image = Image.fromarray(image)
return image
controlnet_id = "alibaba-pai/pai-diffusion-artist-large-zh-controlnet-depth"
controlnet = ControlNetModel.from_pretrained(controlnet_id)
model_id = "alibaba-pai/pai-diffusion-artist-large-zh"
pipe = StableDiffusionControlNetPipeline.from_pretrained(model_id, controlnet=controlnet)
pipe = pipe.to("cuda")
image = Image.open("image.png")
controlnet_image = to_depth(image)
prompt = "白色羽毛的小鸟"
image = pipe(prompt, controlnet_image).images[0]
controlnet_image.save("image_depth.png")
image.save("image_depth_output.png")
样例 Example
Prompt: "白色的小鸟"
使用须知 Notice for Use
使用上述模型需遵守AIGC模型开源特别条款。
If you want to use this model, please read this document carefully and abide by the terms.
- Downloads last month
- 0
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.