PragmaticLM - T5 for Prompt Restructuring
π Overview
PragmaticLM is a fine-tuned T5 model designed to restructure and reframe user prompts for better understanding by downstream LLMs. The model enhances prompt clarity by leveraging contextual restructuring techniques.
π Model Details
- Base Model: T5-Base
- Training Data: [Indirect Requests] (https://huggingface.co/datasets/msamogh/indirect-requests)
- Task Type: Text-to-text transformation
- Library: Hugging Face Transformers
π Training Configuration
- Epochs: 10
- Batch Size: 8
- Learning Rate: Encoder:
1e-5
, Decoder:3e-5
- Optimizer: AdamW
- Loss Function: Cross-entropy loss
- Hardware: GPU (T4)
β‘ Usage
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import torch
tokenizer = AutoTokenizer.from_pretrained("aliMohammad16/pragmaticLM")
model = AutoModelForSeq2SeqLM.from_pretrained("aliMohammad16/pragmaticLM")
def restructure_prompt(input_prompt):
input_text = f"Restructure Prompt: {input_prompt}"
inputs = tokenizer(input_text, return_tensors="pt", padding=True)
output = model.generate(
inputs.input_ids,
max_length=64,
num_beams=4,
early_stopping=True
)
return tokenizer.decode(output[0], skip_special_tokens=True)
# Example Usage
test_prompt = "I am not feeeling well. I need to consult a doctor nearby."
print(restructure_prompt(test_prompt))
β³ Improvements
- Work in progress: This is a work in progress. I am actively working on this model.
- Update: Next I am implementing a multimodular pipeline, integrating TinyLlama 1.1B and Llama Index RAG with
prompt-restructuring
model, to improve output generation.
- Downloads last month
- 24
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
π
Ask for provider support
Model tree for aliMohammad16/pragmaticLM
Base model
google-t5/t5-base