PragmaticLM - T5 for Prompt Restructuring

Model

πŸ“Œ Overview

PragmaticLM is a fine-tuned T5 model designed to restructure and reframe user prompts for better understanding by downstream LLMs. The model enhances prompt clarity by leveraging contextual restructuring techniques.

πŸš€ Model Details

πŸ“Š Training Configuration

  • Epochs: 10
  • Batch Size: 8
  • Learning Rate: Encoder: 1e-5, Decoder: 3e-5
  • Optimizer: AdamW
  • Loss Function: Cross-entropy loss
  • Hardware: GPU (T4)

⚑ Usage

from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import torch

tokenizer = AutoTokenizer.from_pretrained("aliMohammad16/pragmaticLM")
model = AutoModelForSeq2SeqLM.from_pretrained("aliMohammad16/pragmaticLM")

def restructure_prompt(input_prompt):
    input_text = f"Restructure Prompt: {input_prompt}"
    inputs = tokenizer(input_text, return_tensors="pt", padding=True)
    
    output = model.generate(
        inputs.input_ids,
        max_length=64,
        num_beams=4,
        early_stopping=True
    )
    
    return tokenizer.decode(output[0], skip_special_tokens=True)

# Example Usage
test_prompt = "I am not feeeling well. I need to consult a doctor nearby."
print(restructure_prompt(test_prompt))

⏳ Improvements

  • Work in progress: This is a work in progress. I am actively working on this model.
  • Update: Next I am implementing a multimodular pipeline, integrating TinyLlama 1.1B and Llama Index RAG with prompt-restructuring model, to improve output generation.
Downloads last month
24
Safetensors
Model size
223M params
Tensor type
F32
Β·
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Model tree for aliMohammad16/pragmaticLM

Base model

google-t5/t5-base
Finetuned
(535)
this model

Dataset used to train aliMohammad16/pragmaticLM