Meta-Llama-3-8B_alpaca-clean_l0.0002_64
This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 2.0132
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 1
- seed: 0
- gradient_accumulation_steps: 16
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.03
- training_steps: 10000
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.1179 | 0.0003 | 1 | 2.6461 |
2.1519 | 0.0590 | 187 | 1.7584 |
1.4299 | 0.1179 | 374 | 1.7539 |
1.1554 | 0.1769 | 561 | 1.7082 |
2.086 | 0.2359 | 748 | 1.7446 |
1.76 | 0.2949 | 935 | 1.6987 |
1.305 | 0.3538 | 1122 | 1.6802 |
1.1828 | 0.4128 | 1309 | 1.6931 |
2.0012 | 0.4718 | 1496 | 1.6620 |
1.6794 | 0.5307 | 1683 | 1.6657 |
1.2777 | 0.5897 | 1870 | 1.6543 |
1.1958 | 0.6487 | 2057 | 1.6923 |
2.4625 | 0.7077 | 2244 | 1.6584 |
1.7427 | 0.7666 | 2431 | 1.6458 |
1.1636 | 0.8256 | 2618 | 1.6477 |
1.1374 | 0.8846 | 2805 | 1.6614 |
2.2849 | 0.9436 | 2992 | 1.6419 |
1.0011 | 1.0025 | 3179 | 1.6409 |
2.5839 | 1.0615 | 3366 | 1.7018 |
1.334 | 1.1205 | 3553 | 1.6859 |
1.1876 | 1.1794 | 3740 | 1.6755 |
0.9747 | 1.2384 | 3927 | 1.6887 |
2.0187 | 1.2974 | 4114 | 1.6922 |
1.0511 | 1.3564 | 4301 | 1.6827 |
1.0223 | 1.4153 | 4488 | 1.6729 |
1.1295 | 1.4743 | 4675 | 1.6849 |
2.0358 | 1.5333 | 4862 | 1.6879 |
1.3046 | 1.5922 | 5049 | 1.6772 |
1.0023 | 1.6512 | 5236 | 1.6774 |
1.0365 | 1.7102 | 5423 | 1.6905 |
1.8732 | 1.7692 | 5610 | 1.6834 |
1.0398 | 1.8281 | 5797 | 1.6690 |
1.0103 | 1.8871 | 5984 | 1.6662 |
2.3888 | 1.9461 | 6171 | 1.6739 |
0.7728 | 2.0050 | 6358 | 1.6986 |
0.8759 | 2.0640 | 6545 | 1.8575 |
1.3133 | 2.1230 | 6732 | 1.8525 |
0.8286 | 2.1820 | 6919 | 1.7958 |
0.9336 | 2.2409 | 7106 | 1.7920 |
1.0528 | 2.2999 | 7293 | 1.9157 |
1.1672 | 2.3589 | 7480 | 1.8295 |
0.9818 | 2.4178 | 7667 | 1.7832 |
0.92 | 2.4768 | 7854 | 1.7895 |
1.1814 | 2.5358 | 8041 | 1.8489 |
1.3869 | 2.5948 | 8228 | 1.8023 |
0.8245 | 2.6537 | 8415 | 1.7785 |
0.8234 | 2.7127 | 8602 | 1.7827 |
1.6518 | 2.7717 | 8789 | 1.8250 |
1.1769 | 2.8307 | 8976 | 1.8055 |
0.881 | 2.8896 | 9163 | 1.7741 |
0.8681 | 2.9486 | 9350 | 1.7973 |
0.5482 | 3.0076 | 9537 | 1.9381 |
0.6616 | 3.0665 | 9724 | 1.9542 |
1.4274 | 3.1255 | 9911 | 2.0250 |
Framework versions
- PEFT 0.12.1.dev0
- Transformers 4.45.0.dev0
- Pytorch 2.3.0+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1
- Downloads last month
- 3
Model tree for alexander-hm/Meta-Llama-3-8B_alpaca-clean_l0.0002_64
Base model
meta-llama/Meta-Llama-3-8B