uni-dimensional-disability

This model is a fine-tuned version of alex-miller/ODABert on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5629
  • Accuracy: 0.9184
  • F1: 0.8595
  • Precision: 0.8122
  • Recall: 0.9126

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 24
  • eval_batch_size: 24
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.9557 1.0 437 0.8674 0.8629 0.7370 0.7744 0.7030
0.7692 2.0 874 0.6500 0.8810 0.8003 0.7393 0.8721
0.6137 3.0 1311 0.5467 0.8902 0.8152 0.7548 0.8861
0.5431 4.0 1748 0.5695 0.9060 0.8385 0.7907 0.8924
0.5321 5.0 2185 0.5647 0.9123 0.8500 0.7985 0.9085
0.5213 6.0 2622 0.5298 0.9079 0.8448 0.7833 0.9168
0.5031 7.0 3059 0.5567 0.9156 0.8547 0.8070 0.9085
0.4958 8.0 3496 0.5566 0.9156 0.8565 0.7999 0.9217
0.4983 9.0 3933 0.5544 0.9169 0.8578 0.8059 0.9168
0.4971 10.0 4370 0.5629 0.9184 0.8595 0.8122 0.9126

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.4.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
14
Safetensors
Model size
168M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for alex-miller/uni-dimensional-disability

Finetuned
(21)
this model