File size: 1,900 Bytes
a42f056 0dba3ad a42f056 0dba3ad db68279 0dba3ad db68279 0dba3ad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 |
---
license: other
widget:
- text: "Ḣ"
---
## AntiBERTa2 🧬
AntiBERTa2 is an antibody-specific language model based on the [RoFormer model](https://arxiv.org/abs/2104.09864) - it is pre-trained using masked language modelling.
We also provide a multimodal version of AntiBERTa2, AntiBERTa2-CSSP, that has been trained using a contrastive objective, similar to the [CLIP method](https://arxiv.org/abs/2103.00020).
Further details on both AntiBERTa2 and AntiBERTa2-CSSP are described in our [paper]() accepted at the NeurIPS MLSB Workshop 2023.
Both AntiBERTa2 models are only available for non-commercial use. Output antibody sequences (e.g. from infilling via masked language models) can only be used for
non-commercial use. For any users seeking commercial use of our model and generated antibodies, please reach out to us at [info@alchemab.com](mailto:info@alchemab.com).
| Model variant | Parameters | Config |
| ------------- | ---------- | ------ |
| [AntiBERTa2](https://huggingface.co/alchemab/antiberta2) | 202M | 24L, 12H, 1024d |
| [AntiBERTa2-CSSP](https://huggingface.co/alchemab/antiberta2-cssp) | 202M | 24L, 12H, 1024d |
## Example usage
```
>>> from transformers import (
RoFormerForMaskedLM,
RoFormerTokenizer,
pipeline,
RoFormerForSequenceClassification
)
>>> tokenizer = RoFormerTokenizer.from_pretrained("alchemab/antiberta2")
>>> model = RoFormerForMaskedLM.from_pretrained("alchemab/antiberta2")
>>> filler = pipeline(model=model, tokenizer=tokenizer)
>>> filler("Ḣ Q V Q ... C A [MASK] D ... T V S S") # fill in the mask
>>> new_model = RoFormerForSequenceClassification.from_pretrained(
"alchemab/antiberta2") # this will of course raise warnings
# that a new linear layer will be added
# and randomly initialized
```
|