Edit model card

T5-small_finetuned_billsum_subset_model_bs32_lr5e-05

This model is a fine-tuned version of t5-small on the billsum dataset. It achieves the following results on the evaluation set:

  • Loss: 1.9708
  • Rouge1: 0.1898
  • Rouge2: 0.0974
  • Rougel: 0.1666
  • Rougelsum: 0.1663
  • Gen Len: 19.0
  • Bleu: 0.0007

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len Bleu
No log 1.0 31 1.9796 0.1877 0.095 0.1648 0.1646 19.0 0.0007
No log 2.0 62 1.9756 0.1875 0.0968 0.1657 0.1654 19.0 0.0007
No log 3.0 93 1.9745 0.1867 0.0938 0.1638 0.1637 19.0 0.0007
No log 4.0 124 1.9708 0.1898 0.0974 0.1666 0.1663 19.0 0.0007

Framework versions

  • Transformers 4.27.4
  • Pytorch 2.0.0+cu118
  • Datasets 2.11.0
  • Tokenizers 0.13.3
Downloads last month
5
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train alaahussein/T5-small_finetuned_billsum_subset_model_bs32_lr5e-05

Evaluation results