openhermes-mistral-dpo-gptq

This model is a fine-tuned version of TheBloke/OpenHermes-2-Mistral-7B-GPTQ on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1947
  • Rewards/chosen: 1.6152
  • Rewards/rejected: -0.7739
  • Rewards/accuracies: 1.0
  • Rewards/margins: 2.3891
  • Logps/rejected: -44.7556
  • Logps/chosen: -277.0341
  • Logits/rejected: -1.2926
  • Logits/chosen: -2.0369

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 1
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 2
  • training_steps: 50
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.6696 0.01 10 0.5880 0.1428 -0.0848 0.75 0.2276 -37.8643 -291.7574 -1.2055 -2.0304
0.5209 0.02 20 0.3704 0.7380 -0.2765 1.0 1.0145 -39.7818 -285.8060 -1.2770 -2.0614
0.3319 0.03 30 0.2640 1.1988 -0.4424 1.0 1.6412 -41.4403 -281.1980 -1.3008 -2.0673
0.216 0.04 40 0.2150 1.4326 -0.6569 1.0 2.0896 -43.5858 -278.8598 -1.2972 -2.0492
0.1711 0.06 50 0.1947 1.6152 -0.7739 1.0 2.3891 -44.7556 -277.0341 -1.2926 -2.0369

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.0.1+cu117
  • Datasets 2.16.1
  • Tokenizers 0.15.0
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model's library. Check the docs .

Model tree for akashkumarbtc/openhermes-mistral-dpo-gptq