File size: 6,822 Bytes
8abedb4
987eb03
8abedb4
987eb03
 
 
 
531194b
987eb03
8abedb4
987eb03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
531194b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
987eb03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
---

base_model: meta-llama/Meta-Llama-3-8B
license: llama3
tags:
- axolotl
- generated_from_trainer
model-index:
- name: Egyptian-Arabic-Translator-Llama-3-8B
  results: []
---


[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.4.1`
```yaml

base_model: meta-llama/Meta-Llama-3-8B

model_type: LlamaForCausalLM

tokenizer_type: AutoTokenizer



load_in_8bit: true

load_in_4bit: false

strict: false



datasets:

  - path: translation-dataset-v3-train.hf

    type: alpaca

    train_on_split: train



test_datasets:

  - path: translation-dataset-v3-test.hf

    type: alpaca

    split: train



dataset_prepared_path: ./last_run_prepared

output_dir: ./llama_3_translator

hub_model_id: ahmedsamirio/llama_3_translator_v3





sequence_len: 2048

sample_packing: true

pad_to_sequence_len: true

eval_sample_packing: false



adapter: lora

lora_r: 32

lora_alpha: 16

lora_dropout: 0.05

lora_target_linear: true

lora_fan_in_fan_out:

lora_target_modules:

  - gate_proj

  - down_proj

  - up_proj

  - q_proj

  - v_proj

  - k_proj

  - o_proj



wandb_project: en_eg_translator

wandb_entity: ahmedsamirio

wandb_name: llama_3_en_eg_translator_v3



gradient_accumulation_steps: 4

micro_batch_size: 2

num_epochs: 2

optimizer: paged_adamw_32bit

lr_scheduler: cosine

learning_rate: 2e-5



train_on_inputs: false

group_by_length: false

bf16: auto

fp16:

tf32: false



gradient_checkpointing: true

early_stopping_patience:

resume_from_checkpoint:

local_rank:

logging_steps: 1

xformers_attention:

flash_attention: true



warmup_steps: 10

evals_per_epoch: 10

eval_table_size:

eval_max_new_tokens: 128

saves_per_epoch: 1

debug:

deepspeed:

weight_decay: 0.0

fsdp:

fsdp_config:

special_tokens:

  pad_token: <|end_of_text|>

```

</details><br>

[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/ahmedsamirio/en_eg_translator/runs/hwzxxt0r)

# Egyptian Arabic Translator Llama-3 8B

This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) on the [ahmedsamirio/oasst2-9k-translation](https://huggingface.co/datasets/ahmedsamirio/oasst2-9k-translation) dataset.

## Model description

This model is an attempt to create a small translation model from English to Egyptian Arabic.

## Intended uses & limitations

- Translating instruction finetuning and text generation datasets

## Inference code

```python

from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline



tokenizer = AutoTokenizer.from_pretrained("ahmedsamirio/Egyptian-Arabic-Translator-Llama-3-8B")

model = AutoModelForCausalLM.from_pretrained("ahmedsamirio/Egyptian-Arabic-Translator-Llama-3-8B")

pipe = pipeline(task='text-generation', model=model, tokenizer=tokenizer)





en_template = """<|begin_of_text|>Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.



### Instruction:

Translate the following text to English.



### Input:

{text}



### Response:

"""



ar_template = """<|begin_of_text|>Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.



### Instruction:

Translate the following text to Arabic.



### Input:

{text}



### Response:

"""



eg_template = """<|begin_of_text|>Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.



### Instruction:

Translate the following text to Egyptian Arabic.



### Input:

{text}



### Response:

"""



text = """Some habits are known as "keystone habits," and these influence the formation of other habits. \

For example, identifying as the type of person who takes care of their body and is in the habit of exercising regularly, \

can also influence eating better and using credit cards less. In business, \

safety can be a keystone habit that influences other habits that result in greater productivity.[17]"""



ar_text = pipe(ar_template.format(text=text), 

               max_new_tokens=256, 

               do_sample=True, 

               temperature=0.3, 

               top_p=0.5)





eg_text = pipe(eg_template.format(text=ar_text), 

               max_new_tokens=256, 

               do_sample=True, 

               temperature=0.3, 

               top_p=0.5)



print("Original Text:" text)

print("\nArabic Translation:", ar_text)

print("\nEgyptian Arabic Translation:", eg_text)

```

## Training and evaluation data

[ahmedsamirio/oasst2-9k-translation](https://huggingface.co/datasets/ahmedsamirio/oasst2-9k-translation)

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05

- train_batch_size: 2

- eval_batch_size: 2

- seed: 42

- gradient_accumulation_steps: 4

- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10

- num_epochs: 2

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.9661        | 0.0008 | 1    | 1.3816          |
| 0.5611        | 0.1002 | 123  | 0.9894          |
| 0.6739        | 0.2004 | 246  | 0.8820          |
| 0.5168        | 0.3006 | 369  | 0.8229          |
| 0.5582        | 0.4008 | 492  | 0.7931          |
| 0.552         | 0.5010 | 615  | 0.7814          |
| 0.5129        | 0.6012 | 738  | 0.7591          |
| 0.5887        | 0.7014 | 861  | 0.7444          |
| 0.6359        | 0.8016 | 984  | 0.7293          |
| 0.613         | 0.9018 | 1107 | 0.7179          |
| 0.5671        | 1.0020 | 1230 | 0.7126          |
| 0.4956        | 1.0847 | 1353 | 0.7034          |
| 0.5055        | 1.1849 | 1476 | 0.6980          |
| 0.4863        | 1.2851 | 1599 | 0.6877          |
| 0.4538        | 1.3853 | 1722 | 0.6845          |
| 0.4362        | 1.4855 | 1845 | 0.6803          |
| 0.4291        | 1.5857 | 1968 | 0.6834          |
| 0.6208        | 1.6859 | 2091 | 0.6830          |
| 0.582         | 1.7862 | 2214 | 0.6781          |
| 0.5001        | 1.8864 | 2337 | 0.6798          |


### Framework versions

- PEFT 0.11.1
- Transformers 4.42.3
- Pytorch 2.1.2+cu118
- Datasets 2.19.1
- Tokenizers 0.19.1