whisper-medium-ar-no_diacritics

This model is a fine-tuned version of openai/whisper-medium on the audiofolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1762
  • Wer: 7.4970

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 24
  • eval_batch_size: 24
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 8000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.1114 1.01 400 0.1300 9.9764
0.0682 2.02 800 0.1157 8.9138
0.0302 3.03 1200 0.1274 8.2645
0.0151 4.04 1600 0.1277 7.7922
0.0104 5.05 2000 0.1304 7.7922
0.0069 6.06 2400 0.1476 8.4416
0.0033 7.07 2800 0.1307 7.7332
0.0026 8.08 3200 0.1425 8.3235
0.001 9.09 3600 0.1530 8.2054
0.0006 10.1 4000 0.1586 7.9693
0.0008 11.11 4400 0.1601 7.6151
0.001 12.12 4800 0.1647 8.0874
0.001 13.13 5200 0.1650 7.7332
0.0001 14.14 5600 0.1671 7.4380
0.0001 15.15 6000 0.1694 7.2609
0.0001 16.16 6400 0.1726 7.4970
0.0002 17.17 6800 0.1744 7.4380
0.0001 18.18 7200 0.1752 7.4970
0.0 19.19 7600 0.1758 7.4970
0.0 20.2 8000 0.1762 7.4970

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.12.1
  • Datasets 2.8.0
  • Tokenizers 0.13.2
Downloads last month
5
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results